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Abstract. The study aims to compare hybrid Artificial Neural Networks that have been employed as appropriate models 
in the prediction of rainfall with historical data as explanatory variables. The selected area is the Chad River Basin in 
Nigeria with collected data set over the period from 1996 to 2007. A structured analysis of the existing system (SIMHYD) 
shows bottleneck such as excessive data requirement, large computational demand, and the fact that validation is still an 
on-going process. The 12-years historical data each on rainfall, relative humidity, cloud cover, temperature difference, 
and sunshine from the National Metrological Center Oshodi in Nigeria, with lag plot of the cross correlation values of 
rainfall with each of the other variables to choose explanatory variables that exerts significant influence on rainfall. The 
dataset was split into three dataset for the developed ANN model into these percentages: training (50%), Cross 
Validation (25%) and Testing (25%). This was used to validate results obtained, which shows significant correlation of 
rainfall as established for relative humidity, cloud cover and temperature difference (that were used as explanatory 
variables in this study). The Tansig activation function was adopted for the three explanatory variables and two parameter 
weights for each variable identified as the most appropriate model for modeling and predicting rainfall in Chad. Various 
ANN hybrids have been successful in their implementation, showing high degree of accuracy with many practical 
implications to water resource operations as well as provide lead time warning in flood management. Results show 
computed COE as 58, 24, 56 and 42% respectively for the various stations. Observed annual rainfall variations from 
long-term runoff, is an effect of variation cycle with significant correlation between rainfall and runoff (as indicative in the 
dataset used). The study implementation will create a synergy between Artificial Intelligence and other fields, which in this 
case, hydrology via the hybrid ANN models, so that the trained system will help simulate future flood and provide, lead 
time warning in flood management. 
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INTRODUCTION 
 
Rainfall as an environmental factor can change fast, and 
can have significant influence in flood/stream hydrology 
with downstream implication of erosion, water quality, and 
design of engineering structures. And in turn, affects 
quality of life, agriculture, sewage system and tourism 
among others. Long term projections of such dynamic 
phenomena are often prone to error, its adaptation quite 
expensive due to its expansive and dynamic nature, 
making its prediction technically difficult (Conway et al., 

1998). These predictions improvise to propagate input 
data (with noise, ambiguity and assumptions) as applied 
to the model to yield an output via optimization methods 
(Govindaraju, 2000; Haykin, 1999). 

Various studies have successfully employed stochastic 
models for enhancing accurate rainfall prediction via 
optimization (that aims to find an optimal solution in a 
task, chosen from set of possible solution or search 
space), to yield an output guaranteed of high quality, void  
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of ambiguity and perfects assumptions made. Model 
tuning have adapted advances in artificial intelligence to 
yield Evolutionary models, that is capable of performing 
quantitative processing to ensure qualitative knowledge 
and experience, as a new form of natural language 
(Abarghouei et al., 2009; Gaume and Gosset, 2003).  

Evolutionary model via soft computing (SC) aims at 
synergy between Artificial Intelligence and other fields, 
and dedicated to solve problems via exploit of data and 
human knowledge, that is expressed inmathematic 
models and symbolic reasoning, to yield a methodtolerant 
to imprecision, uncertainty, partial truth and noise at its 
input (Coello et al., 2004; Abbott et al., 1986). They are 
metaheuristic method for constraint satisfaction problems 
in vector space with intelligent agents that searches the 
space for optimal fitness as inspired by evolution, 
behavioural patterns in biological populations and natural 
laws. They mimics agents seeking food, and have proven 
efficient in complex optimization (French et al., 1992). 
These include Genetic Algorithm, Artificial Neural 
Network, Ant Colony, Particle Swarm, Annealing, Fuzzy 
logic etc (Branke, 2001a; Beven, 2001a).  

Robust optimization in its attempt to explore dynamic 
processes has 3-feats: robustness, continuous adaptation 
and flexibility. Study considers output feats – with 
uncontrollable constraints modeled in ANN not explicitly 
presenting a space but confined to real parameters and 
often limited by boundary values (Burnash, 1995; 
Campolo et al., 1999).  

Artificial neural networks are trials in an attempt to 
translate into mathematical models, principles of 
biological processing so as to generate in the fastest time 
period, implicit and predictive model evolution of a 
system. Thus, derives from experience its ability to 
recognize feats and behaviours from historic data, and 
can suggest optimal fitness of high quality and void of 
over-fitting, irrespective of modification via other 
approximations with multiple agents. These constantly 
affect the quality of any solution (Dawson and Wilby 
2001a). This work showcases ANN hybrids for RR – 
exploring structural differences and implications of 
multi-agent populated models (agents create their own 
behavioral rules based on historic RR dataset). 
 
 
LITERATURE REVIEW 
 
Models are tools for insight and knowledge about a future 
state. Its reliability can be questioned as results rather 
viewed as prophesy (as it presents likely future of 
variables that are important for optimal operation) than 
certainty (Govindaraju, 2000).  

Rainfall-Runoff prediction estimates are made via 
various mathematical models that can be grouped into: 
(a) knowledge models – has its long-standing application 
that focuses on runoff quantification. The increasing 
awareness and dynamic nature of these environmental  
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problems, has given additional impetus to hydrological 
modeling. Such models must meet new requirements, 
when they are intended to deal with other tasks such as 
erosion, land degradation, leaching of pollutants, 
irrigation, sustainable water/flood resource management, 
land-use possible consequence and climate changes 
(French et al, 1992). Despite efforts in the last two 
decades, hydrological models are still faced with the 
fundamental problem of calibration and validation (Ojugo 
et al., 2013a) due to limited data availability and natural 
heterogeneity of RR-process (Shamseldin, 1997) and (b) 
Data (AI) model – that have arose from the need to learn 
feats in time that is not possible via knowledge driven 
models. 

Also, many problems are related to model testing such 
that traditional tests like split-sample are often insufficient 
to evaluate a model‟s validity and assess its pros/cons of 
the different model approaches. The need for additional 
data has been emphasized, advent of more powerful tests 
required and different dimensionality of model adopted via 
data driven models that employ evolutionary method to 
yield such dimensionality (Oreskes et al., 1984).  
 
 
Runoff model modes 
 
Validation in RR implies a model is tested with 
independent data. It demonstrates that a given model is 
capable of making accurate predictions for periods outside 
a calibration, and asserts if an underlying model‟s concept 
is adequate for a certain catchment to allow for 
discrimination between good and bad model hypotheses. 
It also is used to test if a model can be applied (fitted) to a 
catchment or for a sensitivity analysis of the model 
parameters (Openshaw, 2013; Rientjes, 2004).  

Hjemfelt and Wang (1993) notes that only a model 
application can be validated, but a general non-site 
specific model validation is not possible. Also, the primary 
aim of a model application is to demonstrate that the 
model works for this particular application and its suitability 
for similar problems. Often the implicit argument can be 
found that a model is assumed to be „valid‟ because it has 
been successfully applied in various studies. Model usage 
by research groups, expresses some confidence level, 
though the model of choice is based on non-scientific 
reasons such as freely distributed, user-friendly etc 
(Varoonchotikul, 2003; Seibert, 2000). 
 
 
Groundwater models mode 
 
Validation has been used extensively in groundwater 
models in the use of models in assessing the safety of 
underground disposal of nuclear and toxic waste. 
Khondker et al. (1998) asserts validation as impossible, 
and that models only can be invalidated. They provide 
examples  demonstrating the limited accuracy of  model  
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predictions and argue that verification and validation are 
misleading. These terms cannot be used as they convey 
an impression of correctness, which cannot be justified 
scientifically to the public. Validation in groundwater 
modeling is used for assessing a model‟s goodness of fit 
and such an assessment is possible. On groundwater 
modeling and models in other earth sciences, Halff et al. 
(1993) argue that model verification and validation is 
impossible; and rather, that models can only be confirmed 
by demonstrating that their simulations agree with 
observations. This confirmation is only partly possible and 
thus, concludes that the main benefit of models is 
heuristic, as models are preliminary hypotheses assisting 
in gaining better understanding. 
 
 

Ecological models 
 

Nishimura and Kojiri (1996) reviewed such studies and 
conclude that much of the confusion and the mutually 
exclusive statements about model validation arise from 
varying semantic and philosophical perspectives and from 
different validation procedures. Tarboton (2003) compare 
techniques for validation, which they interpret as the 
comparison of simulated and observed data without the 
specification whether this data has been used for model 
development or calibration or not. De Vos et al. (2005) 
define validation as the process of evaluating the level of 
confidence in the model‟s ability to represent the problem 
entity, and emphasize that a model cannot be expected to 
be absolutely valid.  
Seibert (1999) surveyed but note these distinctions 
between three types of validation as thus: (a) Replicative 
validity ensures prediction agrees with observed data used 
for model design and parameter estimation, (b) predictive 
validity ensures model can accurately simulate a variable 
or time period, which has not been used in model 
development and calibration, and structurally valid if it 
reflects the main couplings and behaviour of a real system, 
and (c) specific validity ensures the generally accepted 
standard for model testing and validating is adequate for a 
special purpose. 

The latter, note to some degree that all models are 
unrealistic as well as emphasize that parameter calibration 
and the use of ad hoc model features often makes 
validation less rigorous, so that even inadequate models 
are likely to pass the tests (Gaume and Gosset, 2003). 
 
 
Validation: Semantic/philosophy in study 
 

Alternative terms to validation have been proposed. 
Dibike and Solomantine (1999) suggests that „history 
matching‟, but it does not distinguish between historical 
data used in training, and those used for independent 
testing. He further propose “confirmation” – one of the 
words listed as explanation of „to validate‟ in the dictionary 
(Hsu et al., 1995) and „to confirm‟ points to, among others,  

 
 
 
 
„to make definitely valid‟. Thus, „confirmation‟ is not less 
ambiguous than the term „validation‟.  

Dibike and Solomantine (2001) suggests “corroboration” 

and the degree of corroboration describes the degree to 
which a hypothesis has passed the tests. Similar to 
„confirmation‟ the word „corroboration‟ does not in 
common use, express the limited and provisional 
acceptance better than „validation‟ does. The word „valid‟ 
is Latin for validus (strong, powerful, well-grounded) and 
means sound or defensible, and differs from words like 
true or correct which are connected to the process of 
verification (Latin word verus, true). There is a need for a 
generally accepted semantics to describe the 
qualifications of model predictions.  

Here, we adopt a more concise (though generally 
criticized) term validation to be appropriate for use in 
connection to model testing. With reference to the false 
„impression of correctness‟ it seems to be of importance to 
clearly state what is (not) meant by validation rather than 
to define a new term. In this study, “verification” is 
inappropriate in model testing, though found in some 
studies – to imply establishment of truth that is hardly 
possible in science and absolutely not in modeling. Thus, 
the philosophy of our use of validation in this study – 
implies predictive validity as proposed by Gaas (1983). 
 
 

Problem statement 
 

The need arose from these: 
 

a) The dynamic nature of RR and its conceptual models 
are flawed with unfounded results. 
b) Data driven models that have adopted ANN most often 
use hill-climbing method whose solution may get stuck at 
local minima, because their speed shrinks as model 
approach optima. 
 
 

Purpose/significance of study 
 

Study implements 3-hybrid ANN algorithm for RR model 
to help speed up the final stages of ANN and find robust 
optima in a shorter amount of time, in large and complex 
tasks. Hybrids, though difficult to implement, yields better 
selection and are encoded via structured learning (to 
address problem of existing statistical dependencies 
amongst data variables) and yield better generation with 
crossover, mutation and temperature function etc. Its 
application will yield computational intelligence for 
dynamic multipoint search in CSPs and be adapted to 
other areas such as image/video analysis, 
communication, control/design, OS task scheduling, 
parallel processing, medicine, security, etc.  
 
 

MATERIAL AND METHODS 
 

Selected area is  BORDA (Nigeria) with  landmass  of  
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Figure 1. Time plot of rain. 

 
 
22045 km

2
, mean rainfall of 846 mm annually and 

perennial discharge of 3.8 m and 1.5 m
3
/s respectively for 

dry and peak periods. Dataset collected (2003 to 2013) is 
split into 3-sets: training (45%), cross-validation (25%) 
and validation (30%). All fragment starts at period of 
constant low rainfall. 
 
 

Pre-data analysis 
 

The time plot for data collected within the period 1996 to 
2007 is as seen in Figure 1 and Table 1. 
 
 

Artificial neural network  
 

Artificial neural network (ANN) as a data processing 
model is inspired by biological neurons of the human 
brain, and consists of interconnected neurons, whose 
major feat is in their ability to learn by example via 
simulation, making them universal estimators (Abraham, 
2005). The brain learns in its behavior to process data, as 
neuron shares electrochemical signals amongst themselves 

via dendrites (Caudill, 1987; Fausett, 1994). These signals 
via synapses axon are converted so that learning occurs 
by adjusting synapse‟s weight, whose input is summed by 
an adder. This depends on the task and an activation 
function, can limit its output amplitude (Mandic and 
Chambers, 2001). The simple mathematical model for a 
synapse as weight connections that modulate its 
associated inputs and the nonlinear feats exhibited in 
neurons via transfer/activation function (sum of weighted 
input) is given by Equation 1: 
 

                    (1) 

Encoded, ANN has three basic layers: input, hidden and 
output, and two network configurations namely: (a) 
feed-forward in which data flows from input to output with 
no feedback, but extends over multiple layers, and (b) 
recurrent has a feedback with dynamic feats that 
undergoes relaxation to evolve a network to stable state 
where activation values and output changes no more. For 
some tasks, the output change is significant and dynamic 
behavior constitutes its output (Ojugo et al., 2013b).  

The configurations are dependent on the application 
area, feats and system requirement (Beven, 2001b; 
Bishop, 1995). Various methods are used to set the 
connection strengths so that learning can take place 
namely: (a) explicit connection via a priori knowledge, and 
(b) implicit connection via post-priori in which the network 
is trained to learn patterns that changes its weight in a 
learning rule (Abraham, 2005; Beven and Binley, 1992). 

Learning is grouped into: (a) supervised in which an 
input vector with a set of desired responses, one for each 
node, is relayed to the output. A forward pass is done and 
errors between desired and actual response for each 
node in the output is found, and then used to determine 
weight changes in the net based on the learning algorithm 
(Gupta et al., 1998; Hall, 2001). Thus, desired signal on 
output is provided by external teacher via 
back-propagation, delta rule and perceptron rule, (b) 
unsupervised or self organization, in which an output is 
trained to respond to clusters of patterns at its input so the 
system discovers statistically, salient feats of an input 
population with no prior knowledge how patterns are 
grouped; rather the system develops its own 
representation of input (Hsu et al., 1995; Heppner and 
Grenander, 1990), and (c) reinforcement in which network 
learns what to do, map states to actions to help maximize 
a numerical reward data.  

Network must discover the actions that yield most 
reward by trying them. Sometime, such actions affect not  
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only the immediate data, but also the rest states (Jang, 
1993; Kennedy et al., 2001).  

The two feats, trial/error search and delayed reward are 
its two distinguishing feats (Gupta et al., 1998; Jain and 
Srinivasulu, 2004; Jang, 1993; Lindstrom et al., 1997). 
Two basic architectures used in this study are feed 
forward and recurrent, which enables training of the 
network to predict future runoff via real-time data retrieved 
from an online data acquisition system that flows strictly 
from input to its output with historic analysed data as 
feedback connection. 
 
 

ANN adopted architecture 
 
The Multilayer Perceptron is interconnected via correlated 
weights, sums weighted input via Tansig activation 
functions as in Equations 2 and 3 to compute its output, 
from signals sent to all nodes in the hidden layer. W i.j is 
weight between input and hidden layers, Woj is bias 
weight and xi is rainfall input signal sent via activation 
function to produce result. Thus, we adopt a 
tangent/sigmoid function (Minns, 1998). 
 

                         (2)                                                                                   
 

                     (3)                                        
 
The Time-Lag Recurrent Network is adopted as it is an 
extended MLP with short-memory that have local 
recurrent connections, requiring a smaller network to 
learn temporal tasks (compared to MLP that use extra 
inputs to represent the past samples). TLRN is more 
plausible and computationally more powerful than other 
adaptive models. It uses back propagation in time (an 
advanced training algorithm) learning so that its output at 
time t is used along with a new input to compute the 
network‟s output at time t+1 in response to dynamism 
(Mandic and Chambers, 2001). Also, the Elman in which 
the hidden unit‟s activation values are fed-back as extra 
set of input, and Jordan in which output values are fed 
back to hidden units (Rajurkar et al., 2004; Karunanithi et 
al., 1994). Thus, output is computed via Tansig activation 
function given as y

k
, sums input, receives target value of 

input training pattern, computes error data, weight 
correction updates in layers (cj

k
) and bias weights 

correction updates (co
k
). This error is sent from output 

layer back to input nodes via error back propagation, to 
correct the weights. Back propagation is the most used 
training algorithm in a multilayer feed-forward networks, 
whose goal is to find the weight that approximates target 
values of output with selected accuracy. The weights are 
modified by minimizing error between target and  

 
 
 
 
computed outputs at the end of each forward pass as in 
Equation 7. If error is higher than the selected value, 
process continues with a reverse pass; else, training 
stops. Weights in BP are updated via mean square error 
continuously until minimal error is achieved (Ursem et al., 
2002).  
 
 
Radial basis function 
 
Recurrent networks are nonlinear time series, 
identification and pattern classification. A simple recurrent 
net is constructed by modifying the multilayered feed 
forward with addition of „context layer‟ to help the net 
retain data between observations. At each move, new 
inputs are fed to the network. Previous contents of hidden 
layer is passed into context layer and later fed back into 
the hidden layer in the next time step (Regiani and 
Rientjes, 2005). The context layer contains nothing 
initially and output from the hidden layer after the first 
input to the network, will be the same as if there is no 
context layer (Perez and Marwala, 2011). Weights are 
calculated same way for the new connections from and to 
the context layer from the hidden layer. Its weight and 
Euclidean distance measure input distance from its center 
to the best, in this curve-fitting high dimensional space 
(Shamseldin, 1997). Its training finds weights with 
learning of best fit to train data, as its Guassian transfer 
functions that assumes an approximation influence which 
data points have at the center, so that function decreases 
with distance from its center. The Euclidean length (rj) 
measures the distance between datum vector y = (y1, ..., 
ym) and center (w1j, ..., wmj): 
 

           (4)                                       
 
The suitable transfer function is applied to rj: 
 

                           (5)  
 
Finally, output k receives weighted combination as: 
 
 

      (6)                       
 
 

Experimental models 
 

Study adoptsTLRN architecture with unsupervised 
learning and RBF a control model to compare the results 
obtained by training the network to generate satisfactory 
results and provide a fail-safe  to  eradicate  noise  in  



 
 
 
 
data-stream processed in real-time. The network learns 
from experiences, generalized from previous datasets to 
new ones with abstract feats, at its inputs containing 
irrelevant data (Sedighizadeh and Masehian, 2009; 
Seibert, 2000). 

Trial-error is used in selecting number of hidden layers 
and nodes in each hidden layer. Previous results have 
shown that ANN with a hidden layer outperforms those 
with two/more, as this only increases the number of 
parameter that only complicates training (Ursem et al., 
2002). The optimal hidden layer size is found by 
systematically increasing the number of hidden node until 
network‟s performance shows no further improvement or 
it longer improves significantly. The network is complex 
enough to accurately simulate dynamic, nonlinear feats. 
Model performance for our study adopts a single hidden 
layer with 18-hidden nodes (Tokar and Johnson, 1999) 
with respect to rainfall, previous discharge and 
evo-transpiration) as supported in Sajikumar and 
Thandaveswara (1999), Bishop (1995) and Reynolds 
(1994).  
 
 
Gravitation search algorithm 
 
Gravitation search algorithm (GSA) is based on Newton‟s 
laws of gravity and motion with its main idea, being to 
consider isolated system of masses, where every mass 
represents a solution to a certain problem. Law of gravity 
states that every particle attracts another and the 
gravitational force between particles are directly 
proportional to the product of their masses and inversely 
proportional to distance between them (Varoonchotikul, 
2003; Ojugo, 2009). Thus, an agent‟s performance 
depends on its mass as they attract each other via 
gravitational force (a pull towards those of heavier 
masses). N agents initializedat start point, are randomly 
located in space so that gravitational force is defined as 
thus: 
 

       (7)                                  
 
Rij is the Euclidean distance between masses for the 
objects (i and j) masses, G(t) is gravitation force at time t 
with small constant ε – which decreases in time to control 
the population and search‟s accuracy. Thus, the total 
force acting on an agent is: 
 

                  (8)                                           
 
rand randomizes agents‟initial state at intervals [0,1]. 
Acceleration of i at time t, in d dimension is directly 
proportional to force acting on agent I, and inversely 
proportional to agent‟s mass: 
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                              (9)                                                    
 
The next velocity of an agent is a function of its current 
velocity plus current acceleration, which updates next 
position given by X as thus: 
 

    (10)                            
 

              (11)                                      
 

Vi
d
(t) is agent velocity in d at time t, rand is a random 

number between [0,1]. Mass is updated as fitness value of 
agent i at time t given as: 
 

                 (12)                               
 

Best(t)/Worst(t) are strongest/weakest agents from their 
fitness route. For a Max task, they are defined: 
 

                   (13)                                       
 

                    (14)                                     
 

At start, agents are located as solution points trained in 
ANN, and then passed over to GSA so that with each 
cycle, agent velocity and position is updated via 
Equations 11 and 12; while G and M are computed at 
each of the iterations via Eq. 8 and 13. The algorithm is 
stopped with a stop criterion (computational expensive), 
or if an optima is found. GSA use exploration ability to 
navigate that guarantees the choice of value of random 
agents, and exploitation ability that allows agents of 
heavier masses to move slower in order to attract those of 
lesser mass and to locate optima around a good solution 
in the shortest time as in Figure 4 (Dawson and Wlby, 
2001b; Seibert, 1999; Haykin, 1999). 
 
 

ANN-cultural genetic algorithm 
 

GA as inspired by Darwinian evolution and genetics 
(survival of fittest), consists of a population (data) chosen 
for natural selection with potential solutions to a specific 
task. Each potential solution is an individual for which an 
optimal is found using four operators: initialize, select, 
crossover and mutation (Coello et al, 2004; Reynolds, 
1994). Individuals with genes close to its optimal, is said 
to be fit. Fitness function determines how close an 
individual is to the optimal solution.  
Ojugo et al. (2013a, 2013b) notes the operators as: 
 
a) Initialize: From the population, individual data are  
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encoded into format suitable for selection. Each 
encodings has its merit/demerit. Binary encoding is 
computationally more expensive to achieve. Decimal 
encoding has greater diversity in chromosome and 
greater variance of pools generated; float-point encoding 
or its combination is more efficient than binary. Thus, it 
encode as fixed length vectors for one or more pools of 
different types. The fitness function evaluates how close a 
solution is to its optimal – after which they are chosen for 
reproduction. If solution is found, function is good; else, is 
bad and not selected for crossover. The fitness function is 
the only part with knowledge of task. The more solutions 
are found, the higher its fitness value.  
b) Selection: Good fit individuals close to optimal are 
chosen to mate. The larger the number of selected, the 
better the chances of yielding fitter individuals. This 
continues until one is chosen, from the last two/three 
remaining solutions, to become selected parents to new 
offspring. Selection ensures the fittest individuals are 
chosen for mating but also allows for less fit individuals 
from the pool and the fittest to be selected. A selection 
that only mates the fittest is elitist and often leads to 
converging at a local optima. 
c) Crossover: Ensures genes of fitter individuals are 
exchanged to yield a new, fitter pool. There are two 
crossover types (depends on encoding type used) as: (a) 
simple crossover for binary encoded pool via particular- or 
multi- point; and all genes are from one parent, and (b) 
arithmetic crossover allows new pool to be created by 
adding an individual‟s percentage to another. 
d) Mutation alters chromosomes by changing its genes or 
its sequence, to ensure that a new pool converges to 
global minima (instead of local optima). Algorithm stops if 
optimal is found or after number of runs (though 
computationally expensive) if a number of new pools are 
created or once no better solution is found. Genes may 
change based on probability of mutation rate. Mutation 
improves the much needed diversity in reproduction and 
its algorithm is as thus: 
Mutation Algorithm 
1. Input: A chromosome rule 
2. Output: Mutated solution, a fns of mutation rate 
3. Set mutation threshold (between 0 and 1) 
4. For each network attribute in chromosome 
5. Generate a random number between 0 and 1 
6. If random number > mutation threshold then 
7. Generate random value 
8. Set solution attribute value with  
9. Generated attribute value 
10. End if: End for Each 
 
Cultural GA is one of the many variants of GA with a belief 
space as: (a) Normative (has specific range of values 
which an individual is bound), (b) Domain (data about task 
domain), (c) Temporal (data about events‟ space is 
available), and (d) Spatial (has topographical data). In 
addition, an influence function mediates between belief  

 
 
 
 
space and the pool – to ensure and alter individuals in the 
pool to conform to belief space. CGA is chosen so as to 
yield a pool that does not violate its belief space and 
reduces number of possible individuals GA generates till 
an optimum is found (Reynolds, 2004). 

Once initialized, ANN computes individual fitness and 
30-individual are selected as the new sub pool via 
tournament, to determine mating individuals. Thus, after 
training, selected data are moved to the CGA model – 
with only crossover and mutation applied, to help the 
network model learn dynamic and non-linear feats in the 
historic, obtained data.  

With GA, only crossover (single point) and mutation is 
carried out, and data between 1 and 30 is randomly 
generated via Gaussian distribution, corresponding to 
crossover points (since prior now, all genes are from a 
parent). Now, other parents contribute the rest to yield 
new individuals, whose genetic makeup is combination of 
both parents. They are then allowed to undergo mutation 
from which 3-random genes are selected for another 
mutation and are allocated new random values that still 
conforms to the belief space. The number of mutation 
applied depends on how far CGA is progressed (how fit is 
the fittest individual in the pool). Thus, number of 
mutations equals fitness of the fittest individual divided by 
2. New individuals replace old ones in pool, with low 
fitness values (creating a new pool). This continues until 
individual with a fitness value of 0 is found, indicating that 
the solution has been reached (Branke, 2001). 

Initialization and selection via ANN ensures first 
3-beliefs are met; while mutation ensures the fourth is 
met. Also, an influence function helps influence how many 
mutations takes place. Knowledge of solution (how close 
task is to solution) has direct impact on how algorithm is 
processed. Algorithm stops when best individual has a 
fitness of 0 (Campolo et al., 1999; Dawson and Wilby, 
2001b).  
 
 
Hybrid ANN-simulated annealing 
 
SA as inspired by annealing, to strengthen glass and 
crystals, so that a glass is heated until it liquefies and 
allowed to slowly cool so that the molecules settles into 
lower energy states. Thus, it tracks and alters the state of 
an individual, constantly evaluating its energy via its 
energy function. Its optimal point is found by running 
series of Markov chain under different thermodynamic 
state (Perez and Marwala, 2011). This neighbouring state 
is determined by randomly changing an individual‟s 
current state via a neighbourhood function. If a state with 
lower energy is found, individual moves to it; else, if 
neighbourhood state has a higher energy, individual 
moves to that state only, if an acceptance probability 
condition is met. If not met, individual remains at current 
state (Kitanidis and Bras, 1980). 

The  acceptance  probability is difference in energies  



 
 
 
 
between current and neighbouring states, and 
temperatures. Temperature is initially set high, so 
individual is more inclined towards higher energy state, 
allowing the individual to explore a greater portion of the 
space and preventing it from being trapped in local 
optimum. As model progresses, temperature reduce with 
cooling and individuals converge towards lowest energy 
states till an optimum point (Ojugo et al., 2013b). Its 
algorithm is: 
 
1. Initialize individual state, energy and temperature 
2. Loop until temperature is at minimum 
3. Loop until maximum number of iterations reached 
4. Find neighbourhood state via neighbourhood function 
5. If neighbourhood state has lower energy than current 
6. Then change current state to neighbouring state 
7. Else if the acceptance probability is fulfilled 
8. Then move to the neighbouring state 
9. Else retain the current state 
10. Keep track of state with lowest energy 
11. End inner loop: End outer loop 
 
This hybrid combines ANN‟s exploratory search of the 
space via multiple individuals and SA‟s flexibility in finding 
a better optimal point, even when a local minimum are 
found and present (Dibike and Solomantine, 1999; 
Dawson and Wilby, 2001).  

ANN first yields candidates with low fitness via training 
and calibration of model. Thus, the model needs to be 
more robust, so that if a better individual is not found, best 
individual is chosen after a number of runs for a series of 
random walks until an optimal solution is found. Some 
factors must be defined: (1) On ANN: the number of runs, 
the dataset used for calibration, the population 
representation within the dataset, the size and cross 
validation function; Conversely, (2) on SA (with ANN 
stages complete), SA is run on the chosen “fittest” 
candidates or individual until a solution is found and what 
is the neighbourhood size and function. As applied, the 
initialized dataset is used for training cum calibration of 
the network (Ojugo et al., 2013a).  

Temperature schedule is applied that randomly 
re-initializes the network for the series of Markov chain 
about to be run. Neighbourhood function is then applied to 
randomly change individual energy states and compute 
fitness function as best fitness and such individual is 
tracked until a fitness of 0.6 is found, which experimentally 
is found that ANN finds a 0.6 fitness quickly (Govindaraju, 
2000). 

ANN finds individuals with low energy, then enters SA 
cycle early enough to apply the temperature schedule as 
needed. Thus, a moderated Markov chain is used that 
accepts the states with energies of lower or equal to 
current state‟s energy. This runs till state with energy of 0 
is reached (to imply that the solution is found). SA and 
ANN, shares the same fitness function (Ojugo et al., 
2012). 
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Model performance evaluation 
 
Model performance is computed via mean square error 
(MSE), mean absolute error (MAE) and mean relative 
error (MRE), coefficient of efficiency (COE) and 
determination (r

2
). As the most commonly used measures 

in hydrology, MSE/MRE/MAE has an ideal value 0; while 
COE and r

2 
has ideal value 1 as in Eqs.16-20 with outputs 

and n observations (Nash and Sutcliffe, 1970): 
 

             (15)                                              
 

                  (16)                                            
 

                   (17)                                         
 

                 (18) 
                

    (19)                                        
 
 
RESULTS 
 
Tables 2 and 3 are comparative performance values 
between the hybrids for RBF and TLRN. After testing all 
hybrids as in Figures 2 and 3 respectively, the results 
analysis is as presented below:  
a) ANNCGA took 21 s to find the solution after 98 
iterations (at best). ANNCGA was run 15 times (to 
eradicate non-biasness), it found optima each time – and 
the time varied significantly between 21 seconds and 4 
min – as its convergence time depends on how close the 
initial population is to the solution as well as on mutation 
applied to the individuals in the pool. 
b) ANNGSA (at best) 18 s after 321 iterations. GSA 
employed a gravitational pull and mass update of 282 
iterations before finding a solution. It was run 25 times 
and solution was found each time on a range between 4 s 
and 3 min. Its convergence time depends on initialization, 
gravitational cum mass updates. 
c) ANNSA arrived at solution 2.112 s after 401 iterations. 
SA used a Markov chain of 387 iterations to find a 
solution. On 25 runs, solution time is between 3 s and 3 
min – and its convergence time depends on initialization 
and random swaps from temperature schedule as applied  
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Table 1. RR parameter for Oshodi (1996 - 2007). 
 

Area Mean Std Dev Coeff. Var Max Rainfall Min rainfall 

Benin 823 359 58 4532 142 

Ekpoma 732 299 24 1034 102 

Sapele 962 420 56 4320 127 

Agbor 734 343 42 1354 156 

 
 

Table 2. Simulated values for RBF network. 
 

Item ANNGSA ANN-CGA ANNSA 

Training/calibration phase 
MAE 0.4512 0.6645 0.6665 
MRE 0.5234 0.5468 0.6518 
MSE 0.6799 0.6938 0.5329 
COE 1.5622 1.5902 1.8320 
R

2
 1.4390 1.3456 1.4523 

    
Testing/validation phase 
MAE 0.3527 0.2196 0.1265 
MRE 0.4982 0.3762 0.2618 
MSE 0.3392 0.3298 0.1203 
COE 0.9456 1.1023 1.1209 
R

2
 1.3430 1.0023 1.1102 

 
 

Table 3. Simulated values for TLRN. 
 

Item ANNGSA ANN-CGA ANNSA 

Training/calibration phase 

MAE 0.6344 0.6045 0.6501 

MRE 0.7234 0.7230 0.6815 

MSE 0.7199 0.6953 0.5796 

COE 1.7220 1.7002 1.7324 

R
2
 1.5401 1.5450 1.5023 

    

Testing/validation phase 

MAE 0.4209 0.4387 0.6215 

MRE 0.4701 0.6420 0.6108 

MSE 0.5401 0.6253 0.2003 

COE 0.9906 1.3056 1.3009 

R
2
 1.5234 1.0923 1.2102 

 
 
and supported by (Haykin, 1999). 
 
 

DISCUSSION 
 
With a common solution space, fitness function and 
selection criteria, note that with weights set between 
0.2/0.35, and biases = 0.75 yields a better and faster 
convergence, before they are crossed over to CGA, GSA 
and SA. Other values, led to a slower convergence and 
sometimes, non-convergence. 
The RBF network as a control models with a hidden 
layer(s) and various nodes within the hidden layer as in 

(Abraham, 2005) reflect a model‟s performance that is 
feasible for prediction. Its inaccuracy is clarified via longer 
training and larger dataset (as long as overtraining does 
not occur). Result showed performance improved at 
testing with greater efficiency (proper training and 
parameter selection – void of over fitting, over 
parameterization and over training), and predicted values 
yielded better result for stations with larger size. RBF was 
also found to be more easily trained to learn data feats 
and consistently outperforms other techniques used – as 
ANN performance is hardly influenced by non-linearity 
and data selection).  

The number of nodes in hidden layer also influenced 
performance. If it is small, network may not achieve its 
accuracy. If it is too many, it may result in overtraining. 
Large stations generate higher peaks at training, and the 
use of two hidden layers in such substations is a merit; 
while smaller catchment is sufficiently handled by single 
hidden layer. The general pattern of rainfall over the 
period, and annual totals indicate spatial and temporal 
variability due to cohesive relationship between rainfall 
and runoff. Factors affecting runoff are more uniform for 
smaller catchments and their coefficients of determination 
increased with decrease in area.  
 
 
Result tradeoffs 
 
Ojugo (2009, 2013b) notes that various trade-offs in 
prediction result often fall under these categories: 
 
 
Result presentation 
 
Researchers often display flawed results, modify/build 
new models rather than re-test limitations, biasness and 
inabilities of existing ones – since negative results are 
less valuable. Data driven model aim to curb non-linearity 
and dynamism in historic datasets, used to train/test it, 
unlike knowledge models. 
 
 
Efficiency  
 
Modelers use figure to show how well their simulations is 
in agreement with observations (even with their limited 
data that is squeezed) with lines for observed and 
simulated runoff that are not easily distinguishable. Some  
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Figure 2. Block diagram of proposed hybrid ANN model design. 

 
 

 
 

Figure 3. Data flow diagram of the hybrid model. 
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Figure 4. Steps for gravitational search algorithm. 

 
 
do not provide numerical data; but their model is in „good 
agreement‟ with observations. Some measure of 
goodness does not provide the relevant information. 
 
 

Insufficient testing  
 
Validation is a comparison of computed versus observed 
values, and many studies suffer from inadequate data. If a 
model aims to simulate more than runoff, such ability is 
demonstrated in unfounded results with limited data and 
misleading results and conclusions. 
 
 
Model validation 
 
Model validation is not an undertaking to be carried out by 
a researcher or research group; but rather, a scientific 
dialogue. Improper model applications and ambiguous 
results often impede such dialogue. The aim of this thesis 
to a greatly minimize confusion in hydrology models as 
well as proffer data driven models that will aid in 
simulation of RR. 
 
 
CONCLUSION AND RECOMMENDATIONS 
 
Models are useful fictions and/or representation of reality  

as their primary value is their use as an intellectual tool, to 
help us better understand and reflect reality. Thus, they 
support experts in making estimates about the future. As 
thus, the model is recommended for use in RR-model 
simulation.  

Models are used for prediction, and serve as 
educational tools to compile existing knowledge about a 
task, as a language to communicate hypotheses, and to 
gain better insight or understanding of a task. Model 
development study of its failure or sensitivity analysis 
helps reflect theories on functioning of natural systems. A 
detailed model may not be operationally applicable in 
larger scale, but allow for study and thus, helps to develop 
other reasonable and applicable model, for larger scales. 
Models are used to examine varied hypotheses about a 
catchment and to investigate which parameter or input 
data are most crucial to be estimated accurately. 

Very simple models do not provide enough new data, 
whereas very complex models are not understandable. A 
model‟s application as an intellectual tool requires less 
accurate numerical agreement between simulations and 
observations, but rather requires feedback mechanisms, 
as more important.  

Hybrids are valuable in comprehending such RR 
processes, and may not necessarily be suitable tool for 
concrete predictions. Only understood and manageable 
models are fully explored. There must be a balance for  
complexity and simplicity, which is crucial for studying RR  
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processes. 
Thus, these recommendations are made: 
 
1. Parameters are a major source of uncertainty. Model 
should have input ranges as computed via Monte-Carlo 
Integral methods. 
2. Multi-criteria training with adequate datasets can help 
to reduce parameter uncertainty. 
3. Prediction is of limited practical use, without clear data 
about reliability and accuracy. 
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