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Abstract. In this paper, spline collocation methods are applied to solve linear and nonlinear Fredholm – integro-
differential equations. Two spline collocation methods are presented in the paper and examples are used to illustrate the 
ability of the spline collocation methods. The results reveal that the proposed spline methods are very effective and 
simple and results obtained are compared favorably with known results in closed form solutions. 
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INTRODUCTION 
 
Integro – differential equations that are considered in this 
work are classified into Fredholm – integro differential 
and Volterra – integro-differential equations. 
 
 
Fredholm – integro – differential equations 
 
The second order linear and non linear Fredholm – 
integro – differential equations that are considered in this 
work are defined as follows: 
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Where  xu  is the unknown function to be determined,

     xhxgxF ,,   tx, Wand  are given smooth 

continuous functions, b  and  a  are constants and F(x) is 

general, a nonlinear. Equation 1 is referred to as linear 
Fredholm – integro – differential equation, while Equation 
2 is the non linear type. 
 
 
Volterra – integro – differential equations 
 
The second order Volterra – integro – differential 
equations that is considered in this work is defined as: 
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Where  xu  is the unknown function to be determined, 

     xhxgxF ,,   tx, Wand  are given smooth  
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continuous functions, b  and  a  are constants and F(x) is 

general, a nonlinear.  
Equation 4 is referred to as the linear Volterra – integro 

differential equation, while Equation 5 is the non linear 
type. 

Integro-differential equations are of significant 
importance in modeling numerous physical processes 
such as signal processing and neural networks (Davis, 
1962; Kanwal, 1997; Micula and Pavel, 1992. 

In recent years, many analytical and numerical 
methods have been proposed by various authors to solve 
integro–differential equations (Linz, 1985). Among such 
numerical methods are Homotopy Analysis Methods 
(Awadeh et al., 2004), Iterative Methods (Laidlaw and 
Phillips, 1972), Orthogonal Polynomial Random Matrix 
model 0f NN (Craig and Harold, 1994). The use of non 

smooth initial value to solve integro–differential equations, 
was developed (Karkarashvili, 1993; Golberg, (1973).  

During the last five decades, there has been growing 
interest in developing and using highly accurate 
numerical methods based on spline approximation for the 
solution of both linear and non linear integro–differential 
equation (Ahlberg et al., 1976; Joseph and Gene, 1973; 
Sastry, 2000). 

Polynomial spline collocation method has been studied 
(Brumer and Tang, 1989; Vilmos, 1999). The B – spline 
method has been considered by Hesan-Elden and 
Hossien (2012). The cubic spline approximation for 
solving ordinary differential, partial differential and integral 
equations has been proposed (Gegele, 2004; Ogunlaran, 
2012; Ogunlaran and Taiwo, 2013; Sastry, (1976). 

The technique that we used is the standard spline 
collocation and non polynomial spline based on the 
combination of low degree polynomials and trigonometric 
functions. 
 
 

STANDARD SPLINE COLLOCATION METHOD 
 

Here, we modified standard spline approximation 
developed in Gegele (2004) to solve second order linear 
and non linear Fredholm – integro – differential 
equations. 
 
 

Linear second order Fredholm - integro differential 
equation 
 

The spline approximation defined in the interval [a, b] 

such that b      x  ...   x  x N10 a  is given as: 
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Putting Equation 8 in Equation 1 yields, 
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Now, we approximate Equation 9 to get 
 

 
   

     
 
















































N

j

t

t

jjjjjjj

j

j

j

j

j

j

xgdtttM
h

u
h

ttM
h

u
h

M
h

tt
M

h

tt
txW

M
1

      

       

1

2

1

2

1

3

1

1

3

1

(10)                                                                                                                                               

          
6

1
 

6

1

66
  ,

N, 1,2,...    j    qh,      t  t  Setting 1-j 
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Collocating Equation 10 at point

 
1-N ..., 1,2, k   , 


 k

N

ab
axk , after simplification 

becomes 
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Similarly, Equation 8 becomes 
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Equations 11 and 12 together with Equation 3 form a set 
of (N+ 2) algebraic linear equation in (N+2) unknowns. 
 
 
Nonlinear second order Fredholm – integro differential 
equations 

 
The spline approximation given in Equation 7 is 
substituted into Equation 2 to give: 
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Now, we approximate Equation 13 to get 
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qh      t  t  1-j Setting  and collocating at  
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 N ..., 1, 0,  k  , 


 k

N

ab
axk  to obtain 
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Similarly, Equation 8 becomes 
 

 

 
 

 

                                                                                                                                                                        

 (16)      

6

1
666

1

  ,
1

1      

0    

1

2

1

2

1

2323

1  






 
















































N

j

k

jj

jjjj

jkj xhdq

qM
h

u

qM
h

uM
hq

M
hq

FqhtxWhM

 

 
Equations 15 and 16 together with (3) form set of (N+2) 
algebraic linear equations in (N+2) unknowns. 
 
 
NON POLYNOMIAL SPLINE COLLOCATION METHOD 
 
Here, we applied the non polynomial Spline function 
based on low degree polynomial and trigonometric 
function. The Spline approximation defined in the interval 
[a, b] such that 
 a=x0 ˂ x1 ˂ … ˂ xN = b is given as: 
 

        (17)                                                         cossin jjjjjjjj xxdxxcxxbaxs    

 

Where jjj d   ,c  ,b  ,ja  are constants to be determined. 

 
Differentiating Equation 17 twice and after simplification, 
we obtain: 
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Linear second order Fredholm - integro differential 
equation 
 
Putting Equation 17 in Equation 1 yields: 
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Now, we approximate Equation 20 to get: 
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Similarly, Equation 21 becomes: 
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Equations 22 and 23 together with Equation 3 form set of 
(N+2) algebraic linear equations in (N+2) unknowns. 
 
 
Non linear Fredholm – Integro differential equations 
 
Putting Equation 17 in Equation 2, we have: 
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Now, we  
 
approximate Equation 24 to get 
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Table 1. Numerical Results for Example 1. 
  

X Exact solution Proposed method Error 

0 1.000000000 1.000000000 0.000000000 

0.1 1.106666666 1.106667015 3.489 10
-6

 

0.2 1.220000000 1.220000034 3.410 10
-6

 

0.3 1.330000000 1.330002983 2.983 10
-6

 

0.4 1.426666666 1.426669503 2.837 10
-6

 

0.5 1.500000000 1.500002602 2.602 10
-6

 

0.6 1.540000000 1.540002591 2.591 10
-6

 

0.7 1.536666666 1.536669095 2.429 10
-6

 

0.8 1.480000000 1.480001994 1.994 10
-6

 

0.9 1.360000000 1.360001405 1.405 10
-6

 

1.0 1.166666666 1.666666770 1.067 10
-8

 

 
 
Table 2. Numerical Results for Example 2. 
 

X Exact solution Proposed method Error 

0 1.000 1.000000000 1.000000000 

0.1 1.049 1.049000060 6.008 10
-8

 

0.2 1.192 1.192000079 7.918 10
-8

 

0.3 1.423 1.423000843 8.432 10
-7

 

0.4 1.736 1.736000688 6.884 10
-7

 

0.5 2.125 2.125000572 5.718 10
-7

 

0.6 2.584 2.584000562 5.623 10
-7

 

0.7 3.107 3.107000401 4.009 10
-7

 

0.8 3.688 3.688000293 2.929 10
-7

 

0.9 4.321 4.321000289 2.887 10
-7

 

1.0 5.000 5.000000200 1.999 10
-7

 

 
 
Table 3. Numerical Results for Example 3 
 

X Exact solution Proposed method Error 

0 1.000000000 1.000000000 1.000000000 

0.1 1.105170918 1.105255338 8.442 10
-5

 

0.2 1.221402758 1.221484948 8.219 10
-5

 

0.3 1.349858808 1.349918828 6.002 10
-5

 

0.4 1.491824698 1.491867908 4.321 10
-5

 

0.5 1.648721271 1.648764281 4.301 10
-5

 

0.6 1.822118800 1.822155230 3.663 10
-5

 

0.7 2.013752707 2.013787117 3.441 10
-5

 

0.8 2.225540928 2.225571418 3.049 10
-5

 

0.9 2.459603111 2.459629491 2.638 10
-5

 

1.0 2.718281828 2.718281934 1.055 10
-7
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Similarly, (21) becomes 
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Equations 26 and 27 together with Equation 3 form set of 
(N+ 2) algebraic linear equation in (N+2) unknowns. 
 
 

NUMERICAL EXAMPLES  
 

We consider here the following examples on linear and 
non linear Fredholm - integro differential equations. 
These examples have been chosen from Abdul-Majid 
(2011). 
 
 

Example 1 
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Example 2 
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Example 3 
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Example 4 
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Table 4. Numerical Results for Example 4. 
 

X 

Exact solution 

 


 6  -  
 

Exact solution 

10      

Proposed method 

10      
Error 

0 0.000000000 0.000000000 0.0000000000 0.0000000000 

0.1 0.016666667 0.006666667 0.0066676308 9.638 10
-7

 

0.2 0.066666667 0.026666667 0.0266750090 8.342 10
-6

 

0.3 0.150000000 0.060000000 0.0600068930 6.893 10
-6

 

0.4 0.266666667 0.106666667 0.1066713340 4.667 10
-6

 

0.5 0.416666667 0.166666667 0.1666967570 3.009 10
-5

 

0.6 0.600000000 0.240000000 0.2400299400 2.994 10
-5

 

0.7 0.816666667 0.326666667 0.3266945570 2.789 10
-5

 

0.8 1.066666667 0.426666667 0.4266884770 2.181 10
-5

 

0.9 1.350000000 0.540000000 0.5400166800 1.668 10
-5

 

1.0 1.666666667 0.666666667 0.6666667679 1.009 10
-7

 

  
 
(Table 4) 
 
 
CONCLUSION 
 
We have shown that approximate solutions of Fredholm - 
integro differential equations by using spline collocation 
method are obtained. The results obtained are compared 
with the exact results (Tables 1 to 4).  Spline collocation 
method therefore, is a powerful procedure for solving 
both linear and non linear Fredholm – integro differential 
equations. The results obtained are relatively close to the 
exact solution. This confirmed the reliability and 
effectiveness of the method to handle problems within 
this class.   
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