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Abstract. Deep learning has demonstrated significant capabilities for learning image features and presents many 
opportunities for agricultural automation. Deep neural networks typically require large and diverse training datasets to 
learn generalizable models. However, this requirement is challenging for applications in agricultural automation systems, 
since collecting and annotating large amount of training samples from filed crops and greenhouses is an expensive and 
complicated process due to the large diversity of crops, growth seasons and climate changes. This research proposed a 
new method for augmenting training dataset using synthesized images that preserves the background context and 
texture of the data object. A synthetic dataset of 1800 images was generated using a reference dataset and applying 
image processing techniques. As reference dataset 100 and for evaluating detection performance 230 real images of 
strawberry flowers were collected in greenhouses. Experimental results demonstrated that the suggested method 
provides improved performance when applied to the state-of-the-arts convolutional object detectors including Faster R-
CNN, SSD, YOLOv3 and CenterNet for the task of strawberry flower detection in non-structured environment. The 
YOLOv3 w/darknet53 model achieved 46.84% boost in performance with average precision (AP) improved from 39.20% 
to 86.04% when applied augmentation using synthetic dataset. The AP of Faster R-CNN w/resnet50, SSD w/resnet50 
and FPN and CenterNet w/hourglass52 models improved by 15.71, 18.42 and 22.24%, respectively. The Faster R-CNN 
w/resnet50 model provided most significant strawberry flower detection performance with AP 90.84%, which is higher 
than SSD w/resnet50 and FPN, YOLOv3 w/darknet53 and CenterNet w/hourglass52 models (88.56%, 86.04 % and 
83.82%, respectively). 
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INTRODUCTION 
 
In recent years, automation in agriculture has motivated 
by concerns over increasing demand of productivity and 
quality of food production whilst decreasing the pressure 
on resources required (Bac et al., 2014). Intelligent 
agriculture has become a popular concept (Tyagi, 2016), 
and crop imaging has turned out to be an important 
means of collecting crop growth information (Zhao et al., 

2016). Detecting objects using off-the-shelf RGB 
cameras and computer vision in field conditions is a key 
requirement for automating many tasks in agriculture 
such as automatic harvest of fruits and vegetables, water 
and nutrition control and management, artificial 
pollination and yield estimation. Varying illumination 
conditions, complex and cluttered background, the  
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camera’s viewing angle and distance, and other factors in 
fields and greenhouses can have certain impacts on 
target detection in agricultural scene (Kapach et al., 
2012). Therefore, any algorithm that depends on 
parameters which are hand-tuned to a specific crop 
features is at risk of being overly specified. 

Unlike hand-engineered computer vision pipelines, 
deep convolutional neural networks (LeCun et al., 2015) 
combine multiple convolutional layers and down sampling 
techniques to learn a hierarchical representation of the 
data, and therefore, the network can adapt to be invariant 
to various types of diversities in the image data. State-of-
the-art computer vision systems based on deep 
convolutional neural networks can deal with variations in 
lighting conditions, pose, shape, large inter-class diversity 
and occlusions (He et al., 2016; Krizhevsky et al., 2012; 
Simonyan and Zisserman, 2014), essential features 
needed for robust detection of objects in complex 
agricultural environment. However, the migration from 
hand-engineered computer vision pipelines to deep 
learning comes with some limitations. While convolutional 
neural networks (CNNs) have the representational 
capability to learn complex models, the success of these 
representations relies on the quality and quantity of the 
training samples. In most computer vision-based 
applications where CNNs show a significant progress 
over hand-engineered methods, such as image 
segmentation, classification, and object detection in a 
scene, the size of the training dataset is typically on the 
order of tens of thousands to tens of millions of images 
(Deng et al., 2009). This allows for much diversity in the 
training samples, and very robust learned models as a 
consequence. The collection and labeling of large 
amount of data from filed crops and greenhouses is an 
expensive and complicated process due to the large 
variety of crops, growth seasons, climate change and 
phenotype diversity. The cost of generating new data and 
the limitations of naturally generated datasets has 
motivated the use of an alternative source of data to train 
deep networks for object detection task for applications in 
intelligent agriculture and farm automation.  

Recent surveys on plant phenotyping emphasize the 
importance of data augmentation and synthetic data for 
training networks (Kamilaris and Prenafeta-Boldú, 2018). 
Synthetic data modeling and graphical rendering play an 
important role in plant phenotyping and genotyping 
(Douarre et al., 2018). In Dyrmann et al. (2016), the 
network was entirely trained on synthetic images 
generated using manually segmented maize plants and 
weeds pasted on bare soil images. They achieved high 
pixel accuracy in classifying maize and weeds when 
tested on real images. However, manual segmentation of 
weeds and maize from raw images is labor intensive. 
Ubbens et al. (2018) employed graphical modeling and 
introduced a parametric version of L-systems for 
modeling synthetic rosettes. They argue that images of 
real and synthetic plants are significantly interchangeable  
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during training a neural network. However, their model is 
applicable only in structured environment. Ward et al. 
(2018), applied domain randomization to produce 
synthesize Arabidopsis images. Although they applied 
random camera positions and lighting to generate the 
images, and randomized leaf positions in a unit sphere. 
The main drawbacks of this method are image textures 
that have a cartoon-like appearance, and it does not 
handle background complexity. 
Several researchers employed basic augmentation 
methods such as rotations (Namin et al., 2018), cropping 
and flipping/mirroring (Dcunha et al., 2017), scaling (De 
Brabandere et al., 2017) and color transformation (Dias 
et al., 2018); and achieved improved performance in 
classification, target detection and instance segmentation 
task in agriculture. These transformations provide limited 
number of augmentations, therefore, cannot help much in 
conditions when a small number of training samples are 
available. 

Accurate and robust flower detection is the key step to 
ensure reliable yield estimation and for the development 
of optimized plant management system for use in 
applications of intelligent agriculture. Despite the 
importance of flower detection in intelligent agricultural 
systems and farm automation, there has been limited 
progress in automatic flower detection in non-structured 
agricultural environment. Most of the existing works 
based on simple color thresholding technique (Adamsen 
et al., 2000; Hočevar et al., 2014; Oppenheim et al., 
2017; Thorp and Dierig, 2011) have their applicability 
hindered especially by variable illumination conditions 
and occlusions by other flowers or foliage. Recently two 
works have applied CNNs for the task of cotton flower 
(Xu et al., 2018) and apple flower (Dias et al., 2018) 
detection in outdoor field and orchards. Inspired by 
successful researches using CNNs in several computer 
vision tasks, previous work by Rahim and Mineno (in 
press) employed the Faster R-CNN to detect and count 
tomato flowers in greenhouses and produced good 
results. 

This study proposed a method of data augmentation 
preserving texture of target object (strawberry flower) and 
background context as close as possible to imaged 
flowers in real greenhouse scenes. Using a small number 
of real images of strawberry flowers and plants, 
segmented strawberry flowers, geometric transformations 
and image processing techniques, a large diverse set of 
synthetic images of strawberry flowers in dense 
cultivation in greenhouse was generated. Among these, 
some techniques can be considered global, like color 
thresholding, rotations and scaling, while some are 
tailored specifically for the particular dataset, for example, 
number of flowers and their size variations in images. 
Using the synthesized images alongside real training 
data, this work demonstrated the applicability of the 
proposed method to boost performances of modern 
convolutional object detection networks including Faster  
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Figure 1. Synthetic image generation pipeline. 

 
 
R-CNN (Ren et al., 2015), SSD (Liu et al., 2016), 
YOLOv3 (Redmon and Farhadi, 2018) and CenterNet 
(Duan et al., 2019) in accurately detecting strawberry 
flower in non-structured environment. 
 
 
MATERIALS AND METHODS 
 
This work seeks to demonstrate that realistic synthetic 
images can be used in conjunction with real data to train 
deep CNNs to accurately detect strawberry flowers in the 
images. 
 
 
Empirical reference dataset 
 
Empirical data was a foundation for two objectives. First, 
it was used as a source of segmented strawberry flowers 
and background images and as a reference to create 
realistic conditions e.g., flower numbers and sizes in the 
images to generate the synthetic dataset. Second, to 
provide training dataset and an evaluation test set for 
object detection networks that use the synthetic dataset 
for boosting performance. 

The empirical image dataset was acquired using a 
smartphone camera (Huawei P20 Lite) with 4608 × 3456 
pixels resolution under daylight conditions from different 
distances and angles. The greenhouses are located in 
Shizuoka, Japan. The first collection was taken in the 
research and development greenhouses owned by 
Shizuoka Prefectural Agriculture and Forestry Research 
Institute on the 5th of February 2020 and contained 100 

images of strawberry flowers and 65 images of 
strawberry plants without any flower. The second 
collection, which contained 180 images of strawberry 
flowers was taken on the 19th of February 2020 from the 
same institute (different greenhouses). The third 
collection, which contained another 50 strawberry flower 
images was captured in a commercial greenhouse on the 
24th of February 2020. All image collections included 
various cultivars of strawberry flowers in dense 
cultivation. The images from the second and third 
collections were used for evaluation purpose and not 
included in training set. The entire empirical dataset was 
labeled manually using LabelImg graphical image 
annotation tool. Most visible flowers in the image were 
labeled by rectangle bounding boxes. Very small and 
blurry flowers were disregarded and were not labeled. 
 
 
Synthetic image generation pipeline 
 

The overall synthetic image generation pipeline can be 
divided into two key steps: (1) flower segmentation, (2) 
guided collage composition (Figure 1). The final output of 
this pipeline is synthetic strawberry flower images in 
dense cultivation those simulate real greenhouse 
environment as close as possible and their corresponding 
annotations. 
 
 
Flower segmentation 
 
In order to preserve the texture of target object in the  
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Figure 2. Real strawberry flowers with manual annotations. 

 
 
synthetically generated images, segmented strawberry 
flowers from the real images were used to compose new 
images. Each annotated flower in the raw image were 
segmented from its background. The raw data consisted 
of 100 high resolution RGB images of strawberry flowers 
with high quality manual annotation (rectangle bounding 
box per object) of most visible flowers (Figure 2). Using 
corresponding annotation information all the box regions 
containing a flower were extracted from the raw image 
and then color-based thresholding was applied to each 
extracted region to segment strawberry flowers from its 
background. The segmentation was performed over the 
HSV color space as it has been proven to be useful in 
many color-based algorithms for segmentation (Aquino et 
al., 2015; Bairwa and Agrawal, 2014; Kaur and Porwal, 
2015; Plebe and Grasso, 2001). Segmentation was done 
based on the fact that strawberry flowers are white with 
green yellow carpel and stamen.  

Determination of threshold values in a segmentation 
process is a crucial part, since each pixel segmented out 
of the image is considered as non-flower pixel and is not 
taken into consideration in the following steps, even if it a 
flower’s pixel and vice versa. Hence, in order to 
determine the threshold values over the H (hue), S 
(saturation) and V (value) components correctly, a 
sampling program was written using python OpenCV 
3.4.1, and parameters were then chosen empirically. For 
white flower parts (corolla), the low threshold value of the 
hue component chosen was 0 and the high threshold was 
chosen to be 255, the low threshold value of the 
saturation component chosen was 0 and the high 
threshold was chosen to be 75 and the low threshold 
value of the value component chosen was 168 and the 
high threshold was set to 255, since these thresholds 
segment white corollas well with low noise. For green 
yellow flower parts (carpel and stamen), the low threshold 
value of the hue component chosen was 22 and the high 
threshold was chosen to be 34, the low threshold value of 
the saturation component chosen was 65 and the high 
threshold was set to 255 and the low threshold value of 
the value component chosen was 115 and the high 
threshold was set to 255, since these thresholds segment  

green yellow flower parts relatively well with minimum 
noise. Next, the two segmented regions are joined using 
an OR operator so the whole flower is segmented. 
Finally, backgrounds of all the segmented flowers were 
made transparent. 
 
 

Guided collage composition 
 
The guided collage generation is composed of carefully 
positioning segmented strawberry flowers on top of 
selected background images. From the original set of 
segmented strawberry flowers, we selected a set of 
‘suitable’ flowers, by two criteria: (a) clear appearance 
(without/minimum noise) and (b) not occluded by other 
flowers or foliage. The resulting set consists of ~100 
flowers (out of ~550 original flowers) (Figure 3). Occluded 
flowers were discarded because in the real environment it 
is uncommon to see cut flowers and the partial 
appearance of flowers is a side effect of the collage 
procedure. Scaling and rotation operations were applied 
on the selected set of flowers in order to expand flower 
number and create more variations in appearance. Each 
flower was rescaled to in a random range between 18 to 
145 pixels (chosen based on the size of smallest and 
largest segmented flower) in larger dimension, preserving 
the aspect ratio. The rotation angle of each segmented 
flower was randomly selected in the range of 0 to 359 
degrees. The expanded set consists of ~500 images.  

As background for the synthetic images we used a set 
of 65 images of strawberry plants in greenhouse in dense 
cultivation without any visible strawberry flowers (Figure 
4) and their mirrored images. The rationale for selection 
of background is based on our intention of simulation of 
real greenhouse environment as close as possible and 
preserving background complexity.  

In the next step, Excess Green (ExG) vegetation 
indices (Woebbecke et al., 1995) was applied on the 
background image to distinguish pixels of strawberry 
plants from non-plant background. The ExG indexing 
process produced a binary mask with 1 indicating pixels 
that fell within the plant area and 0 otherwise. This mask  
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Figure 3. Examples of segmented strawberry 
flowers used for guided collage composition. 

 
 

 
 

Figure 4. Examples of strawberry plant images used as backgroung for 
composing synthetic image. 

 
 

 
 

Figure 5.  Examples of generated synthetic images used to augment training set. 

 
 
guides the collage composition process and prevents 
positioning segmented strawberry flowers on non-plant 
area on the background image. 

Finally, the collage was created by pasting 2 to 4 large 
flowers (larger dimension >72 pixels) or 3 to 12 small 
(larger dimension <= 72 pixels) flowers (random number 
in arbitrary but fixed range) at random non-zero pixel 
locations (plant area) on top of the background image 

(512 × 512). The location of each flower was randomly 
selected inside plant area, and the only restriction was 
that the flower center remains outside the area of a 
previously positioned flower, allowing maximum 50% 
overlap due to our deliberate intention of accurately 
detecting flowers under up to 50% overlap condition. 
Some samples of generated images are shown in Figure 5. 

Parallel to image composition, we generated corresponding 



 
 
 
 
annotation for every synthetic image. 
 
 
Convolutional object detection networks 
 
In this augmentation experiment, four state-of-the-arts 
convolutional object detection networks were employed 
for the task of strawberry flower detection in order to 
evaluate the applicability of synthetic images for 
improving their performance. 
 
 
Faster R-CNN 
 
The Faster Region-based Convolutional Neural Network 
(Faster R-CNN) object detection system (Ren et al., 
2015) composed of two modules: 1) a Region Proposal 
Network (RPN) which proposes regions that may contain 
objects and 2) a classification module which classifies the 
individual regions and regress a bounding box around the 
object. Images are propagated through a feature 
extractor (e.g. Resnet50) and generated high 
dimensional feature map is feed into the RPN network. 
The RPN produces up to a predefined number of box 
proposals. In the next stage, these box proposals are 
used to crop those features which would correspond to 
the relevant objects from the same feature map. Finally, 
individual feature maps are propagated through 
subsequent two sibling fully connected layers (the 
classification module), in order to predict an object class 
and associated finest bounding box. The detection time 
depends on the number of region proposals generated by 
RPN. 

In this study, Faster R-CNN with Resnet50 (He et al., 
2016) was adopted for the task of strawberry flower 
identification in images captured in greenhouses. The 
Tensorflow implementation of Faster R-CNN of object 
detection API (Huang et al., 2017) was used. 
 
 
YOLO 
 
The You Only Look Once (YOLO) object detection 
framework (Redmon et al., 2016) unifies target 
classification and localization into a regression problem. 
A YOLO network does not require RPN, and it produces 
bounding box coordinates and probabilities of each class 
directly through regression. The network splits each 
image in the training set into S × S grids. If the center of 
the object’s ground truth falls in a grid, then the grid is 
responsible for detecting the existence of that object. 
Each grid predicts the location of bounding boxes, their 
confidence scores, and class conditional probabilities. 
The confidence score indicates the likelihood that the grid 
contains an object. 

The YOLOv2 (Redmon and Farhadi, 2017) adopts the 
idea of the “anchor box” in Faster R-CNN and uses k- 
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means clustering method to generate suitable priori 
bounding boxes. It also introduces batch normalization, a 
high-resolution classifier, dimension clusters, direct 
location prediction, fine-grained features and multi-scale 
training methods that enormously increases the detection 
accuracy compared with YOLO. YOLOv3 (Redmon and 
Farhadi, 2018) is an improved version of YOLOv2. It uses 
multi-scale prediction to detect the final target, and its 
network structure is more complex than YOLOv2. 
YOLOv3 predicts bounding boxes on different scales, 
and multi-scale prediction makes YOLOv3 more effective 
for detecting small targets than YOLOv2. In this work, 
YOLOv3 with Darknet-53 was used for the task of 
strawberry flower detection. 
 
 
SSD 
 
The Single Shot Detector (SSD; Liu et al., 2016) is one of 
the primary endeavors at using convolutional neural 
network’s pyramidal feature hierarchy for efficient 
detection of objects of various sizes. Like YOLO, SSD 
detection also happens in one stage, a deep 
convolutional network directly predicts object classes and 
anchor boxes without requiring a second stage per-
proposal classification operation. SSD uses multi-scale 
convolutional bounding boxes and turn-outs are 
connected to multiple feature maps. Lower resolution 
layers are used to detect larger scale objects while higher 
resolution layers capture smaller scale objects. This 
study used SSD with resnet50 and feature pyramid 
network (FPN; Lin et al., 2017) for the purpose of 
strawberry flower detection. The Tensorflow 
implementation of SSD by object detection API (Huang et 
al., 2017) was adapted. 
 
 
CenterNet 
 
Most effective object detectors, such as the previously 
mentioned Faster R-CNN, SSD and YOLOv3, enumerate 
a nearly exhaustive amount of bounding box proposals 
and classify each of them. CenterNet (Duan et al., 2019) 
introduces a different approach - it models an object as a 
single point - the center point of its bounding box. At first, 
a region proposal is obtained by a pair of corner points. 
Then, the network verifies whether the proposal is indeed 
an object by detecting if there’s a center key point of the 
same class appearing in the central region of the 
proposal. In this study, CenterNet with an Hourglass-52 
(Zhou et al., 2019) backbone was used for strawberry 
flower detection task. 
 
 
Evaluation of guided collage composition algorithm 
 
To evaluate the efficiency of the guided collage composition 
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Table 1. Initialization parameters for the detection networks. 
 

Detection networks Size of input image Batch size Momentum optimizer value Initial learning rate Decay 

Faster R-CNN 
512 × 512 

1 

0.9 

0.0003 
Manual 

SSD 12 0.8 

YOLOv3 416 × 416 6 0.0001 0.96 

CenterNet 512 × 512 5 0.001 Manual 

 
 
algorithm, two different sets of synthetic images were 
generated. First set of synthetic images was generated 
using guided collage composition algorithm and second 
set was generated by positioning selected segmented 
strawberry flowers at random locations on top of 
background image which we call random collage 
composition. 
 
 
Evaluation metrics 
 
This study used the following indicators for evaluating the 
performance of convolutional object detection models for 
strawberry flower detection and the effectiveness of 
augmentation using synthetic images. 
 
 
Precision, recall and average precision  
 
The correctness of an identified strawberry flower object is 
determined by the intersection-over-union (IoU) overlap 
with the corresponding ground truth bounding box 
(Girshick et al., 2015). The IoU overlap is defined as 
follows: 
 

𝐼𝑜𝑈

=  
𝐴𝑟𝑒𝑎(𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥 ∩  𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥)

𝐴𝑟𝑒𝑎(𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑏𝑜𝑥 ∪ 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥)
 

 

A predicted bounding box is considered as true positive 
(TP) if its IoU overlap with a ground truth bounding box is 
greater than a certain threshold. Otherwise, the predicted 
bounding box is determined as false positive (FP). When 
the ground truth bounding box has no matches with the 
predicted bounding box, it is considered as false negative 
(FN). The default value of the IoU overlap threshold is 0.5 
(Manning et al., 1999), which was used in this study. 
Based on these definitions, the precision and recall are 
calculated (Manning et al., 1999): 
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
Based on the precision and recall score precision-recall 
curve is obtained by: (1) ordering all strawberry flower 

detections according to their confidence score, (2) 
matching detections to ground truth starting from highest 
confidence score until a recall r̃ higher than recall level 𝑟 
is reached, (3) calculating precision values based on 

each recall level 𝑟 and (4) interpolating the precision 
𝑝𝑖𝑛𝑡𝑒𝑟𝑝 by the maximum precision that can be achieved 

for a recall level r as defined by (Everingham et al., 2010) 
as: 
 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) =
max

r̃ : r̃ ≥ 𝑟 p(r̃) 

where 𝑟 ∈ {0, 0.1, 0.2, … , 1}.  
 

The average precision (AP) was utilized to quantify the 
detection performances of different strawberry flower 
detection models. The standard average precision 
metrics, AP@).5IoU, is an overall measure of the 
performance of an object detector concerning a specific 
class of an object detection. According to Everingham et 
al. (2010), AP is calculated as the arithmetic mean of the 
precision-recall curve: 
 

 𝐴𝑃 =  
1

11
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝

𝑟 ∈{0.0,…,1.0}

(𝑟) 

 
 

Detection time 
 
The average detection times for several convolutional 
object detection models were compared in this study, and 
the real-time performance of these models was analyzed. 
 
 

RESULTS AND DISCUSSION 
 

The detection networks were trained and tested on GPU 
(Nvidia GeForce GTX 1080 Ti) with a machine having 
Intel ® core i7-9700k 3.60 GHz processor and 64 GB 
RAM under the deep learning development framework of 
TensorFlow. The network initialization parameters are 
shown in Table 1.  
 

 

Dataset description  
 

A synthetic image dataset of 1800 images were 
generated using the method as described in synthetic  
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Table 2. Statistics of the entire dataset. 
 

Data type Empirical images Synthesized images Total 

Training 100 1800 1900 

Test 230  230 

 
 

Table 3. AP scores of different strawberry flower detection models. 
 

Models 
AP 

Empirical dataset (%) After augmentation by synthetic images (%) 

Faster R-CNN w/resnet50 75.13 90.84 

SSD w/resnet50 and FPN 70.14 88.56 

YOLOv3 w/darknet53 39.20 86.04 

CenterNet w/hourglass52 61.58 83.82 

 
 
image generation pipeline. This dataset was used to 
augment training dataset that contains 100 empirical 
strawberry flower images.  

In this study, a series of experiments with the trained 
Faster R-CNN, SSD, YOLOv3 and CenterNet models 
were conducted with the test images to verify the 
effectiveness of the generated synthetic images. Test set 
contains 230 empirical images of strawberry flower with 
resolution 4608 × 3456 pixels. Table 2 shows the 
statistics of the entire dataset. 
 
 
Influence of augmentation by synthetic images 
 
In order to verify the effectiveness of the augmentation 
method proposed in this study, the Faster R-CNN 
w/resnet50, SSD w/resnet50 and FPN, YOLOv3 
w/darknet53 and CenterNet w/hourglass52 neural 
networks were trained using a dataset that contains only 
empirical images and another expanded dataset that 
contains both empirical and synthetic images of 
strawberry flowers. The AP scores of the corresponding 
models are shown in Table 3. 

Based on the detection results, augmenting the 
empirical set using synthetic images improved 
performance of all the models remarkably for the task of 
strawberry flower detection in non-structured agricultural 
environment. Empirical data on Faster R-CNN with 
resnet50 achieved AP 75.13%. When augmentation 
using synthetic images was applied, the AP increased to 
90.84%. The AP of SSD with resnet50 and FPN and 
CenterNet with hourglass models improved by 18.42% 
and 22.24%, respectively. The YOLOv3 with darknet53 
model achieved the most significant boost in performance, 
improving the AP by > 46% (from 39.20% to 86.04%). 
Figure 6 graphically visualizes the impact of the number 
of synthetic images on the strawberry flower detection 
performance of different models. From the results, one 
can draw the conclusion that the performance of the all 
four detection models improves as the number of  

synthetic images increases. 
 
 
Efficiency of guided collage composition algorithm 
 
The efficiency of guided collage composition algorithm 
was analyzed by comparing the performance of the data 
augmentation by synthesized images generated using 
guided collage composition with data augmentation by 
synthesized images generated using random collage 
composition. The AP score of the models trained using 
image set expanded by applying guided collage 
composition is higher (by >1.9%) than that of the models 
trained using image set expanded by applying random 
collage composition (Figure 7). Considering the results 
(Figure 7), guided collage composition simulates the real 
environment well and capable of generating more 
realistic synthetic images than random collage. 
 
 
Comparison of different detection networks 
 
In this section, the strawberry flower detection 
performances of Faster R-CNN, SSD, YOLOv3 and 
CenterNet are analyzed. The precision-recall curves and 
the average detection time (per image with resolution 
4608 × 3456) of different strawberry flower detection 
models are shown in Figure 8 and in Table 4, 
respectively. It was observed that YOLOv3 w/darknet53 
and SSD w/resnet50 and FPN models were faster, while 
Faster R-CNN w/resnet50 was slower but more accurate 
model. All the models provided high precision (>0.91) for 
strawberry flower detection, however, the recall was low 
(<0.85) for CenterNet with hourglass52. 

With high precision (>0.92) and recall (>0.91), Faster 
R-CNN with resnet50 turned out to be the most accurate 
and robust model for strawberry flower detection in non-
structured agricultural environment. The significant 
performance of Faster R-CNN reflects RPN’s ability to 
produce good quality object proposals.  
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Figure 6. AP of different models with different number of synthetic images. 

 
 

 
 

Figure 7. Guided collage composition vs. Random collage composition. 

 
 
The YOLOv3 w/darknet53 and SSD w/resnet50 and FPN 
provided faster detection (15.96 ms and 16.53 ms, 
respectively) compared to Faster R-CNN w/resnet50 
(20.87ms) and CenterNet w/hourglass52 (18.25 ms) as 
they do target detection in one pass without requiring 
second stage per-proposal classification in Faster R-CNN 
and  proposal refinement in CenterNet. 

The SSD w/resnet50 and FPN model achieved best 
balance between detection performance and detection 
speed (Figure 9). Therefore, SSD w/resnet50 and FPN 
could be a suitable model for applications where real-time 
detection of flowers is required such as artificial 
pollination using a drone. On the other hand, Faster R-

CNN w/resnet50 could be a suitable model for 
applications where accurate detection of all flowers in the 
scene is needed such as yield estimation. 

Figure 10 visualizes some strawberry flower detections 
on images from our test set, showing side-by-side 
comparisons of four detection models. It can be observed  
that the Faster R-CNN w/resnet50 model detected almost 
all visible strawberry flowers in the images correctly and 
could address challenging issues, such as different 
illumination, overlapping, occlusions and very small 
targets (Figure 10a to d). The SSD w/resnet50 and FPN 
and YOLOv3 w/darknet53 models performed well under 
overlapped and occlusion conditions (Figure 10e, f and  
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Figure 8. Precision-recall curve of several strawberry flower 
detection models. 

 
 

Table 4. Average detection time of several strawberry flower detection models. 
 

Models 
Faster R-CNN 

w/resnet50 
SSD w/resnet50 and 

FPN 
YOLOv3 

w/darknet53 
CenterNet 

w/hourglass52 

Average detection time (ms) 20.87 16.53 15.96 18.25 

 
 

 
 
Figure 9. AP and average detection time of different strawberry flower detection 
models. 

 
 
Figure 10i, j, respectively), however, SSD only showed its 
weakness in detecting very small flowers (Figure 10g, h) 
since SSD uses layers already deep down into the 
convolutional network to detect objects. The CenterNet 
w/hourglass52 model demonstrated poor performance 
under occlusions (Figure 10n). 

CONCLUSION 
 
In this study, synthetically generated images of strawberry 

flowers were applied to improving performance of strawberry 
flower detection using convolutional neural networks in non-

structured agricultural environment. Experimental results  
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Figure 10. Examples of strawberry flower detections by several models. (a-d) detections by Faster 
R-CNN with reanet50, (e-h) detections by SSD with resnet50 and FPN, (i-l) detections by YOLOv3 
with darknet53, (m-p) detections by CenterNet with hourglass52. 

 
 
demonstrated that suggested data augmentation method 
enhances network performances remarkably indicating 
its’ ability in generating large and diverse set of realistic 
synthetic images. This modest contribution will serve to 
motivate further examination of integrating synthetic data 
with real world botanical scenes for developing 
agricultural automation systems and different plant 
phenotyping tasks. 

Our second contribution is the experimental 
comparison of performance of some modern 
convolutional object detectors. This will serve as a 
guideline for practitioners to select an appropriate method 
when extending object detection in various application of 
intelligent agriculture. 
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