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Abstract. In this study, several machine learning methods on the representative stock market index of South Korea and 
the Korean Composite Stock Price Index (KOSPI) 200 were tested as machine learning has become ubiquitous in the 
financial field for asset selection. Compared to other major global stock markets, KOSPI has remained relatively flat over 
time. Despite the extremely low overall market growth, all of the tested models experienced annualized returns between 
2.4 and 7.5 times the KOSPI 200 index over the same period. Even after applying an overestimated 0.5% transaction 
fee per daily trade the models beat out the market by a notable margin. While all tested models outperformed the market 
significantly, some models outcompeted the other tested models. A highlight of the present research is determining 
whether predicting class labels or predicting values is preferable in machine learning-driven daily trading algorithms. 
Four classification models - logistic regression, random forest, deep neural network, gradient-boosted trees - are 
compared to four prediction models - multiple regression, random forest, deep neural network, gradient-boosted 
regression trees. Additionally, an equally-weighted ensemble of the classification models is compared to an equally -
weighted ensemble of the prediction models. Of the total of ten models, classification techniques which tend to 
outcompete prediction techniques by a slight margin was shown, and all models outperform the market. 
 
Keywords: Statistical arbitrage, machine learning, random forests, gradient boosted trees, deep neural networks. 
 
 
INTRODUCTION 
 
Investors want to consistently beat the market. Whether 
the market is efficient or not, investors seek to capture 
any opportunities that they can to increase their return on 
investment. Recently, developments in artificial 
intelligence and machine learning technologies are 
providing effective tools for identifying signals for beating 
markets. These technologies have become ubiquitous in 
the finance industry because they are powerful, 
automated or semi-automated and cost efficient. There 
have been many proposed academic models for beating 
markets and many more proprietary models in use by 
investment firms and fund managers. While proprietary 
models are closely guarded secrets for the private firms 
utilizing them, several models in this study are adapted 

from the academic literature to test model performance 
on the KOSPI 200 constituents over a twelve-year period. 
More specifically, regression models, random forests, 
deep neural networks, gradient-boosted trees and 
ensemble models were tested for the purposes of 
comparison. Models are compared by training them to 
predict the following market day’s out-sample adjusted 
closing price for each stock in the KOSPI 200 constituent 
list every day over the twelve-year testing period. 
Analogously, we train corresponding models on the same 
data, but employ discrete classification predictions based 
on the probability of whether each stock will outperform 
the median of the adjusted close price of all stocks during 
the following market day. The performance between the  
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different types of machine learning models, as well as the 
performance between training each model on discrete or 
continuous output variables were compared. 

Historically, there have been two general approaches 
toward investment strategies: fundamental analysis and 
technical analysis. Fundamental analysis arguably began 
with Benjamin Graham in the first half of the 19th century 
when he argued for the notion of buying stocks below 
their intrinsic value to sell after the market corrected itself 
(Graham and Dodd, 1934; Graham and McGowan, 
2005). Since then, the body of research in fundamental 
analysis has become extensive, broad and effective. 
Most commonly, fundamental analysis strategies include 
some type of quantitative analysis, that is, delving into the 
financial statements of the company to identify growth 
and/or value stocks, which has been shown to be an 
effective strategy in practice (Gray and Carlisle, 2012).  

While fundamental analysis has been shown to work, 
e.g. a notable proponent is Warren Buffett, the 
shortcomings of analysis solely based on fundamentals is 
clear. The accessibility to reliable, timely and full data in 
terms of financial ratios and other market and accounting 
indicators can be difficult and expensive at the very least. 
Furthermore, many fundamental indicators, which include 
book-to-market ratio and price-to-earnings ratio, are often 
only provided annually for each company, making them 
insufficient on their own for short-term trading. 
Alternatively, technical analysis is based on the premise 
that prices lead the market and drive fundamentals. 
Therefore, past prices drive current and future prices. 
This is the crux of momentum-based stock trading 
strategies, and its effectiveness can be attributed to 
predictable behavioral tendencies of investors (Hong and 
Stein, 1999; Gray and Vogel, 2016). Generic momentum 
is calculated by taking the product of gross returns for 
twelve months and subtracting one, while a more 
common approach is to calculate generic momentum 
whilst omitting the most recent month (Asness et al., 
2013; Gray and Vogel, 2016). In practice, such simple 
momentum strategies have been replaced by more 
complicated and cutting-edge techniques. 

Statistical arbitrage models are characterized by 
systematic trading signals, market neutral trading book 
used for asset selection, and statistical mechanisms 
driving the generation of excess returns (Thomaidis et al., 
2006; Avellaneda and Lee, 2008). One common type of 
statistical arbitrage model is pairs trading, which came 
about around the same time in the mid-1980s and 
identifies a pair of stocks that have correlated price 
movements over time in order to enter into spread bets 
when those prices diverge by a certain amount. Due to 
the high correlation in price movements of the past, the 
prices are likely to re-converge at some point in the future 
at time which the investor exits the bet. Therefore, the 
driving force of the success of pairs trading techniques is 
based on mean-reversion. There is a large breadth of 
academic work on pairs trading to determine how to  
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identify trading pairs, and when to enter and exit spread 
bets (Bogomolov, 2013; Do and Faff, 2010; Huck, 2009; 
Jacobs and Weber, 2015; Lei and Xu, 2015; Song and 
Zhang, 2013). Cointegration is an approach developed by 
the Nobel laureates (Engle and Granger, 1987) and has 
been applied to pairs trading wherein the non-stationary 
time series of two assets can become stationary through 
a linear combination of the two. This approach has been 
applied in order to identify pairs and set rules for when to 
enter and exit trades as well (Chiu and Wong, 2015; 
Clegg and Krauss, 2018; Krauss et al., 2017). 

As the paradigm of the financial field has shifted 
towards computer driven algorithmic trading, the 
underlying foundations of the models are based on 
technical analysis, fundamental analysis or a hybrid of 
both. Atsalakis and Valavanis (2009) analyzed 100 
academic papers on computing techniques that forecast 
financial markets or assets and found that neural 
networks, time series models, genetic algorithms and 
other machine learning techniques were among the most 
popular, in which over one third of the models utilized 
input variables based on prices or some derivative of 
asset prices. Since then, there have been many new 
developments.  

The same mean-reversion principle that makes pairs 
trading techniques viable has been utilized by statistical 
arbitrage models using machine learning and artificial 
intelligence for asset selection. Where pairs trading 
usually bets that the pair of assets will revert to a mean, 
statistical arbitrage models often rely that the trading 
book of assets will revert to a mean, and those assets 
moving toward or away from that mean can be identified 
through statistical signals. Neural networks and other 
machine learning algorithms are common and effective 
techniques that identify the statistical signals that 
generate statistical arbitrage, and these machine learning 
techniques have been expanded on in several notable 
academic papers (Burgess, 2000; Dixon et al., 2015; 
Enke and Thawornwong, 2005; Huang et al. 2005; 
Sermpinis et al., 2013). Tsai et al. (2011) combined 
classifier machine learning algorithms into an ensemble 
that outperformed any single classifier to predict asset 
prices. Takeuchi and Lee (2013) developed another 
statistical arbitrage model using stacked restricted 
Boltzmann machines that made particularly clever use of 
preprocessing asset prices into time lags spanning over 
every market day of the month and every month 
thereafter for one year. The input variable method 
therefore provides price movement information very 
concisely and was used by Krauss et al. (2017) to 
develop another classifier ensemble which used a 
diverse set of single-classifiers including a random forest, 
gradient-boosted tree, and deep neural network model. 
Krauss et al. (2017) applied their classifier ensembles on 
the S&P 500 to achieve annualized returns several times 
higher than that of the market. This classifier ensemble, 
along with the single-classifier models was adapted and  
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applied to the KOSPI 200 in this study. Since the S&P 
500 is a relatively high-growth index with about 9-10% 
annualized return, the preset study tends to corroborate 
the high model performance on an extremely low-growth 
index, the KOSPI 200, which only achieves about 2-3% 
annualized return. 

While many models make use of machine learning 
classifiers, there is little research into the difference in 
performance between classification models and level 
estimation models (which are referred to as prediction 
models henceforth). One such study that analyzed the 
difference between four classification and four prediction 
time-series-based machine learning models found that 
the classification models generally outperformed the 
prediction models on the S&P 500, FTSE 100, and Nikkei 
225 (Leung et al., 2000). Since that time, there have 
been many developments in machine learning techniques 
and very little additional research into prediction versus 
classification model comparisons. The aim of this study is 
to apply adapted models onto the KOSPI 200 and 
comparing corresponding classification and prediction 
models for four machine learning algorithms, in addition 
to equally weighted ensembles. 
 
 
MATERIALS AND METHODS 
 
Data 
 
For empirical testing of selected models, the Korean 
Composite Stock Price Index (KOSPI) 200 were selected. 
The KOSPI 200 was selected for several reasons. (1) 
There are plentiful amounts of research on other global 
stock indices such as the S&P 500 and FTSE 100. (2) 
KOSPI 200 is a low growth market remaining relatively 
flat over the analysis period, with roughly only 2% 
annualized returns over the testing period, allowing us to 
test whether daily trading on a non-growth scenario can 
still payoff. (3) KOSPI 200 constituents have a feasibly 
small and computationally efficient number of daily assets 
for back-testing nearly a dozen separate machine 
learning (ML) models. 

Assets’ adjusted close prices were obtained for all daily 
constituents of the KOSPI 200 from January 4, 2000 until 
April 21, 2017 via FnGuide Inc. The data was split into 
non-overlapping training and trading sets over the period 
for a total of 13 training-trading set pairs. Training sets 
consisting of the prior three years of data were used to 
train each of the ML models at the beginning of the 
consecutive year to predict the corresponding trading set. 
Although infrequent, stocks with missing data during a 
training period were filtered out of the training-trading set 
pair. There is little to no survivorship bias in the 
methodology, since only data that would have been 
available at the time of trading was used. Predictions and 
classifications were made on a total of 3,212 market days 
starting from the first market day of 2004 over the roughly  

 
 
 
 
200 KOSPI constituents for each day, resulting in about 
642,400 predictions for each of 10 models. 
 
 
Feature generation 
 
Training sets span three years of stock prices prior to the 
year of the corresponding trading set. Features are 
generated at time t over one year of time lags, where lag 

m ∈{{1,2,⋯, 20}∪{40,60,⋯,240}}. The time lags represent 

daily market lags within the month, and a time lag for 
each month thereafter up to one year, as per Krauss et 
al. (2017) and Takeuchi and Lee (2013). Thus, 31 
features are generated as follows: 
 

                      (1) 
 
where s is a stock in the KOSPI 200 constituent list at 
time t. 

Two types of output variables were used, one for 
classification models and one for prediction models. 
Prediction models use a simple dependent variable of the 
following day’s expected return calculated as such: 
 

                     (2) 
 
Classification models use the following day’s expected 
return and classify it depending on whether the return for 
each stock is above or below the median of the expected 
return over all stocks for time t+1. In other words, the 
output is 1 for stocks expected to outperform the median 
return of the following day, and the output is 0 for stocks 
expected to underperform the median. It should be noted 
that the output of the classification models is a probability 
that the stock outperforms the median at t+1. The training 
data uses the realized t+1 returns to train the models, 
since this data would be available at the time of training 
the model prior to the trading set. However, the trading 
set predicts the t+1 values as if they were unknown, since 
this would in fact be the case in the simulated scenario at 
every time of t. 
 
 
Stock rankings and trades 
 
For prediction models, a ranking of stocks at each time t 
is extracted for each model sorted by those stocks with 
the highest predicted return for time t+1 to the lowest 
predicted return. In the classification models, stocks are 
sorted for each model by their probability to outperform 
the median, wherein stocks with the highest probability 
are ranked higher and the stocks with a lower probability  



 
 
 
 
to outperform the median are ranked lower. For each 
time t, the top ranked k stocks are longed for one day, 
meaning that they are bought at the adjusted closing 
price of time t and sold at the adjusted closing price at 
time t+1. This assumes full liquidity of all stocks, and thus 
friction costs are assumed to be zero. The concentration 

of k is tested for k ∈{5,10,15,⋯, 50}. It is expected that 

higher concentrations of stocks, that is, lower k, will result 
in relatively higher returns, while more diluted 
concentrations of stocks, that is, higher k, will result in 
more stable returns. Furthermore, an excessive 
transaction fee of 0.5% is incurred for each trade for 
every stock. While 0.5% is an over-estimation since 
0.35% is more realistic, the over-estimated 0.5% is used 
to show a conservative trading scenario.  
 
 
Software 
 
The statistical programming language R was used for 
data preprocessing, data handling and modeling. The 
package xts (Ryan and Ulrich, 2017a) was used for time 
series partitioning, quantmod (Ryan and Ulrich, 2017b) 
was used to get KOSPI 200 index data and 
PortfolioAnalytics (Peterson and Carl, 2015) for financial 
statistical analysis. For modeling, the open source H2O 
software was called from the h2o package in R to 
develop the deep neural networks (Arora et al., 2015) 
and gradient-boosted trees (Click et al., 2015). 
Specifically, gradient-boosted trees use the XGBoost 
algorithm (Chen et al., 2018) via the h2o package in R 
(The H2O.ai Team, 2017). Random forests were trained 
using the randomForest R package (Liaw and Wiener, 
2002).  
 
 
Model specification 
 
Models were trained annually on the first market day of 
January for the trading sets beginning in 2004 and ending 
in 2017. Model predictions for each trading set were 
saved and aggregated for out-sample analysis.  
 
 
Logistic and multiple regression 
 
Regression models are a broad set of models that often 
use statistical methods to fit to a feature space. Both the 
logistic regression model (LGT) and the multiple 
regression model (REG) were trained using all variables. 
While the base assumptions of regression are breached 
due to autocorrelation of the features and high multi-
collinearity, we assess the model performances on the 
ability to identify stocks that will increase in value the 
most, rather than assessing based on model fit. As such, 
there are no other parameters set for the regression 
models and basic statistical approach to compare to the  
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more complex machine learning models used. Our 
expectation for the models is low based on their 
limitations of dealing with non-linear relationships 
between the features and the dependent variable. The 
logistic regression model gives the natural log of the odds 

that  for stock s at time t will be above the median 
adjusted close price for all stocks in the constituent list 
the following market day, time t+1. It is formulated as 
follows: 
 

      (3) 
 
where 𝛽0 is the intercept and 𝛽m is the coefficient to the 
m

th
 input variable and m is 1 to 31 

The multiple regression model is used for the 
corresponding prediction model to the classification 
model - logistic regression. The multiple regression 
model predicts the expected adjusted close price for 
stock s at time t+1. The multiple regression model is 
formulated as follows: 
 

               (4) 
 
where 𝛽0 is the intercept and 𝛽m is the coefficient to the 
m

th
 input variable and m is 1 to 31 

 
 
Random forests 
 
Random forests are a bootstrap aggregating (bagging) 
tree-based machine learning method. Bootstrap 
aggregating works by randomly sampling and resampling 
observations in the training set and aggregating the 
results. For the number of trees in the random forest, a 
separate randomly sampled subset with replacement of 
the training data is created for each tree in the forest. By 
randomly subsampling observations of the training 
dataset for each tree in the forest, overfitting to the 
training set is averted while maintaining the underlying 
characteristics of the data. Furthermore, at each node in 
the tree, only a random subset of variables is considered 
to make the splitting decision, which de-correlates the 
trees. Since random forests are a non-parametric 
method, there are no underlying assumptions about the 
distribution of data. 

The classification random forest (RAFclass) and 
prediction random forest (RAFpred) were trained after 2 
tuning criteria were specified - (1) the number of trees, B; 
and (2) the subsampling parameter, m. The random 
forest algorithm creates B trees to their maximum depth 
and aggregates them for a majority vote. In order to 
mitigate the overfitting problem that are inherent in 
decision trees, random forests subsample m features 
randomly at each split for every tree in the forest. We set  
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B to 500 as to minimize computation time and not overfit 
the training data by oversampling. The subsampling 
parameter m differs between the RAFclass model and 
RAFpred model, as per Breiman (2001). In the RAFclass 
model, m is set as the floor of the square root of the p 
features, where p is 31, so m is 5. In the RAFpred model, 
m is set as the floor of p divided by 3, where p is 31, so m 
is 10.  
 
 
Deep neural networks 
 
Neural networks are a broad set of algorithms with the 
goal of identifying and interpreting signals via multiple 
interconnected nodes, roughly modeled on the way 
neurons identify and interpret signals in the human brain. 
Deep neural networks are a class of ‘stacked neural 
networks’, meaning that multiple layers of nodes are 
stacked on top of one another. Deep neural networks are 
effective at identifying complex relationships between the 
input features and dependent variable. The classification 
deep neural network (DNNclass) and prediction deep 
neural network (DNNpred) are feed-forward multilayer 
artificial neural networks trained using stochastic gradient 
descent via back-propogation. As a multilayer perceptron 
model, the node structure is set with three hidden layers 
with 31 input nodes, one for each feature, the first hidden 
layer with 31 nodes, the second hidden layer with 31 
nodes, the third hidden layer with 31 nodes and an output 
layer of two nodes for the classification model and single 
output node for the prediction model (that is, I31-H31-
H31-H31-O2 for classification; I31-H31-H31-H31-O1 for 
prediction). Thus, the number of nodes remains constant 
and relatively large to detect sensitive signals in the 
feature space as the inputs are fed forward to either a 
classifier or prediction output.  

All inputs are normalized with a minimum of 0 and 
maximum of 1. Stopping parameters for training were set 
to cease model training on the deep neural networks for 
whichever came first, either 1000 epochs or the stopping 
threshold of an improvement on the training set MSE of 
10

-6
 for DNNpred or a misclassification error rate 

improvement equal to or lower than zero on the training 
data for DNNclass. All models stopped within 5 to 20 
epochs of training, which is sufficient for convergence of 
the model and yet efficient enough for relatively short 
computation times. In order to minimize overfitting to the 
training sets, the input dropout rate was set to 0.1, 
dropout rate for hidden layers set at 0.5 and L1 
regularization was set at 10

-5
. The activation function 

used was ‘maxout with dropout’. 
 
 
Gradient-boosted trees 
 
Gradient-boosting is a boosting technique that converts 
weak learners, in our case shallow decision trees, into  

 
 
 
 
strong learners. B learner trees are generated from the 
training data by iteratively generating tree upon the error 
of the previously iterated tree. The sequential iterations of 
trees are trained on the residuals of the previous 
iteration, and hence the learner tree’s classification or 
prediction rules are updated to minimize a loss function. 
The Extreme Gradient Boosting (XGBoost) algorithm was 
utilized due to its power, flexibility and efficiency. 

The classification gradient-boosted trees model 
(GBTclass) and prediction gradient-boosted trees model 
(GBTpred) are successively fit shallow decision trees, 
where each successive tree builds on correcting the 
respective classification error or regression error from the 
previously iterated tree to build a strong ensemble of 
weak learning trees. This study subsamples the gradient 
boosted trees by variables, using half of the available 
feature space for each tree. Input features were 
standardized with a minimum of 0 and maximum of 1. To 
maintain the shallow depths of trees, maximum tree 
depth was set to 3 to avoid over fitting. Shrinkage on the 
magnitude of each gradient step is used to slowly 
converge the model towards the observed values in the 
training data in the form of the learning rate, which is set 
at 0.1. The number of 100 trees per model allows for 
convergence of the models within a reasonably short 
computation time. 
 
 
Ensembles 
 
Two simple ensemble models were built using the 
aggregated output of other models. Ensemble models 
use the outputs of other models as inputs and aggregate 
the results to build a more robust classification or 
prediction. A simple soft voting ensemble (ENSssv) was 
constructed using the output probabilities from the 
classification models. The term soft in simple soft voting 
pertains to the use of output probability values instead of 
the crisp classification values. Therefore, the ENSssv 
model uses the probability outputs for the LGT, RAFclass, 
DNNclass, and GBTclass models. For each time t, the 
ENSssv model averages the probabilities of the four 
classification models over all constituents at time t and 
outputs a new probability for each stock s at time t that it 
will surpass the median for all stocks the following market 
day. The ENSssv takes each classification model’s output 
hi(x) and averages the probability outputs as follows: 
 

              (5) 
 
where H

j,s,t
 is the ENSssv output based on the K 

classification models, and j is the class each stock s over 
all the constituent stocks at time t 

The simple average ensemble model (ENSavg) takes a 
simple average of all prediction models’ outputs hi(x). The  



 
 
 
 
ENSavg uses the prediction outputs of the REG, RAFpred, 
DNNpred, and GBTpred models as inputs in order to 
combine a simple average of the model predictions for 
each stock s at time t formulated as follows: 
 

               (6) 
 
where H

s,t
 is the ENSavg output based on the K prediction 

models, and s is each stock over all the constituent 
stocks at time t. 
 
 
RESULTS 
 
Classification models outperform their prediction model 
counterparts in terms of annualized returns at most levels 
of asset concentration, with some notable exceptions in 
the ensemble models and gradient-boosted trees. 
Annualized downside deviations are nearly identical 
between all models at the same asset concentrations, 
wherein the deviations become more stable as the 
number of assets increases in the portfolio. Figure 1 
displays the annualized returns for each model, as well 
as the annualized downside deviations of returns over ten 
levels of asset portfolio concentrations. The cell 
background with the minimum performance is blackened 
while the maximum performing model-portfolio 
concentration combination is colored with a white 
background. All models in between are a different shade 
of gray corresponding to their performance relative to the 
minimum and maximum, that is, lower performances 
have a darker background and vice versa. 

For simplicity and clarity, we set the number of assets 
at 50 for subsequent model comparisons. It is important 
to note that the best single models in terms of both 
annualized returns and the highest Sharpe Ratios are the 
random forest models using 10 assets, and the best 
average annualized return at any tested asset 
concentration is 15 assets. Despite the higher 
performance at higher concentrations of stocks, the 50-
asset concentration was chosen for several reasons. 
First, choosing the best concentration based on post hoc 
model selection often has a tendency to be overfit to the 
data that it was tested on. Randomness in the data may 
result in any specific asset concentration to either over or 
underperform. Therefore, comparison based on the 
single best models or concentration with the best average 
performance of models is misguided, since it may be 
selecting on this bias. Instead, there was a focus on the 
rankings of models and it was found that the 50-asset 
concentration generally follows a similar pattern to other 
portfolio concentrations in terms of which models outrank 
other models. Most importantly, the deviation in 
annualized returns is most reliable at lower asset 
concentrations, meaning that including more assets gives  
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a more robust estimate of the models performance. While 
higher portfolio concentrations with fewer stocks have 
better performance, for the purposes of model 
comparisons, a more robust estimate is preferable. Thus, 
the portfolio concentration at 50 assets was set for 
subsequent analysis and model comparison since 50 
assets gives the most reliable results for generalization. 

Table 1a and b compare the machine learning 
techniques over several metrics both prior to and after 
applying transaction fees, respectively. The metrics 
include annualized return, annualized deviation, average 
drawdown, downside deviation, skewness of returns, 
kurtosis of returns, Sharpe Ratios and Sortino Ratios. 
The annualized return is the percentage change in 
principal averaged over the number of trading sets. The 
annualized deviation is the deviation of the returns of 
trading sets averaged over the number of trading sets, 
since each trading set covers a one-year period. Average 
drawdowns (ADD) is ostensibly a measurement of the 
magnitude of drawdowns, and is formulated as a simple 
average of the magnitude of drawdowns in the period, 
meaning that a higher ADD corresponds to more investor 
dissatisfaction. Downside deviation is a better measure 
for risk than annualized deviation because downside 
deviation considers only those deviations that drop below 
a previously specified level of Minimum Acceptable 
Return (MAR). The MAR can be specified by an investor 
to be any investment goal that meets their expectations, 
so that downside deviation uses MAR as a measure from 
which to determine if returns are positive (that is, above 
MAR) or negative (that is, below MAR). This study sets 
MAR as 0 for simplicity and comparability. Skewness of 
returns is the asymmetry measure of the portfolio return 
distribution. A skewness of 0 describes a symmetric 
distribution, where a higher skewness is indicative that 
returns are more skewed to the right, leading to higher 
investor satisfaction. Kurtosis measures the degree of 
flatness of the distribution of returns, so a high kurtosis is 
indicative of more extreme values, where the normal 
distribution is characterized by a kurtosis of 3. Therefore, 
higher kurtosis is more platykurtic and thus more 
undesirable to investors. 

Table 1a and b display the results from both before and 
after applying 0.5% transaction fees on each asset trade. 
Since trades are daily, there becomes a significant drop 
in performance from Table 1a to b, especially since a low 
portfolio concentration of 50 stocks was used. However, 
despite over-estimating the transaction fee at a slightly 
over-realized 0.5% for comparison’s sake, even the 
lowest performing model results in annualized returns 
over twice that of the market. Annualized return 
deviations in the machine learning models exceed that of 
the market, which may be misleading. By analyzing the 
downside deviation statistics, it becomes clearer that the 
risk is more comparable to that of the market, as some 
models are slightly higher while others are slightly lower. 
Since the ML models generate significantly higher  
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Table 1a. Annualized performance of models before transaction fees. 
 

Model 
Annualized 
returns (%) 

Annualized 
deviation 

(%) 

Average 
drawdown 

(%) 

Downside 
deviation 

(%) 

Skewness 
of returns 

Kurtosis of 
returns 

Sharpe 
ratio 

Sortino 
ratio 

KOSPI 200 Index BM 2.28 21.52 4.056 1.002 -0.609 7.171 1.341 1.815 

          

Classification 
Models (50 assets) 

LGT 12.85 21.79 3.665 0.997 -0.584 9.286 4.187 5.765 
RAFclass 12.98 21.69 3.692 0.999 -0.663 8.716 4.231 5.786 
DNNclass 14.21 21.64 3.644 0.987 -0.587 7.981 4.555 6.287 
GBTclass 10.91 21.64 4.108 0.989 -0.541 8.159 3.699 5.097 
ENSssv 12.28 21.65 4.203 0.988 -0.538 8.140 4.058 5.603 

          

Prediction Models  

(50 assets) 

REG 12.77 21.73 3.390 0.993 -0.530 8.937 4.172 5.750 
RAFpred 12.97 21.69 4.046 0.992 -0.574 8.713 4.229 5.825 
DNNpred 11.64 21.81 4.025 0.997 -0.529 8.863 3.871 5.337 
GBTpred 8.95 21.68 4.788 0.996 -0.530 7.990 3.178 4.357 
ENSavg 12.04 21.63 4.116 0.985 -0.500 8.302 3.996 5.526 

 

*LGT, Logistic Regression; RAF, Random Forest; DNN, Deep Neural Network; GBT, Gradient-Boosted Trees; REG, Multiple Regression. 
 
 
Table 1b. Annualized performance of models after transaction fees. 
 

Model 
Annualized 
Returns (%) 

Annualized 
deviation (%) 

Average 
drawdown 

(%) 

Downside 
deviation (%) 

Skewness 
of returns 

Kurtosis of 
returns 

Sharpe 
ratio 

Sortino 
ratio 

KIOSPI200 Index BM 2.28 21.52 4.056 1.002 -0.609 7.171 1.341 1.815 

          

Classification 
Models (50 assets) 

LGT 10.15 21.80 4.110 1.003 -0.609 9.307 3.486 4.772 

RAFclass 10.31 21.70 4.077 1.006 -0.687 8.742 3.536 4.806 

DNNclass 11.49 21.65 3.952 0.994 -0.610 8.006 3.852 5.285 

GBTclass 8.27 21.65 4.713 0.996 -0.565 8.179 2.997 4.105 

ENSssv 9.61 21.65 4.345 0.994 -0.562 8.160 3.355 4.604 

          

Prediction Models  

(50 assets) 

REG 10.07 21.74 4.097 1.000 -0.555 8.951 3.470 4.754 

RAFpred 10.30 21.70 3.659 0.999 -0.598 8.733 3.534 4.838 

DNNpred 8.97 21.82 4.874 1.003 -0.553 8.878 3.172 4.346 

GBTpred 6.36 21.69 5.457 1.002 -0.553 8.008 2.477 3.376 

ENSavg 9.38 21.64 4.628 0.992 -0.523 8.321 3.295 4.529 
 

*LGT, Logistic Regression; RAF, Random Forest; DNN, Deep Neural Network; GBT, Gradient-Boosted Trees; REG, Multiple Regression. 
 
 
returns, higher risk should be expected.  

It may be argued that the higher deviation compared to 
the market in machine learning models is justified by the 
high Sharpe and Sortino ratios in relation to the market. 
The Sharpe Ratio is reported, as it has become a relative 
standard to compare risk-adjusted return between 
portfolios, despite its crude use of standard deviations of 
returns. An arguably better metric for comparing 
portfolios is the Sortino Ratio, which measures the 
excess return similarly to the Sharpe Ratio but deciphers 
a difference between deviations of returns and those 
deviations of returns that fall below a specific investment 
goal (that is, MAR). By that measure, the classification 
models outperform their prediction model counterparts in 
every case except the random forests. Random forests 
are known to be resilient against scaling, so it may make 

little difference whether the random forest is a 
classification or prediction model for the purposes of this 
study. 

In all counts, our models beat the market by a 
generous margin. Specifically, the deep neural networks, 
random forests and regressions outperformed all other 
models, while the ensembles and gradient-boosted trees 
underperformed relatively to other models. However, it is 
important to note that the skewness and kurtosis of 
returns for the ensembles and gradient-boosted tree 
models are remarkable compared to other models. A 
lower kurtosis indicating fewer outliers, and a higher 
skewness indicating a distribution that lends itself to 
higher returns is good evidence for a safer investment 
strategy. The nature of the gradient-boosting algorithm 
focuses on error reduction which makes the distinction  
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Table 2. Annual cumulative return statistics. 
 

Model 
Cumulative return as of period end 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

KIOSPI200 
Index 

BM 0.00 0.02 0.51 0.52 0.89 -0.02 0.38 0.63 0.33 0.43 0.40 0.29 0.25 0.33 

                

Classification 
Models (50 
assets) 

LGT 0.00 0.15 0.96 1.18 2.41 1.06 2.13 3.08 2.85 3.04 3.21 3.00 3.62 3.67 

RAFclass 0.00 0.33 1.43 1.69 2.69 1.35 2.77 3.44 2.63 3.07 3.21 3.24 3.80 3.74 

DNNclass 0.00 0.16 0.99 1.38 2.93 1.22 2.46 3.56 3.26 3.41 3.73 3.56 4.24 4.44 

GBTclass 0.00 0.07 0.74 1.03 2.11 0.82 1.84 2.60 2.17 2.29 2.33 2.19 2.62 2.74 

ENSssv 0.00 0.06 0.83 1.08 2.35 1.10 2.37 3.15 2.63 2.76 2.85 2.78 3.34 3.38 

                

Prediction 
Models (50 
assets) 

REG 0.00 0.17 1.10 1.22 2.28 0.98 1.94 2.57 2.06 2.16 2.46 2.84 3.53 3.63 

RAFpred 0.00 0.26 1.34 1.70 2.73 1.29 2.48 3.09 2.67 2.91 2.78 2.73 3.49 3.73 

DNNpred 0.00 0.15 0.87 1.06 2.30 0.90 1.92 2.76 2.24 2.38 2.65 2.49 2.95 3.07 

GBTpred 0.00 -0.01 0.66 0.82 1.85 0.71 1.62 2.27 1.69 1.78 1.70 1.59 1.89 1.98 

ENSavg 0.00 0.08 0.84 1.08 2.25 1.01 1.88 2.51 2.13 2.21 2.55 2.47 3.07 3.26 

 
 
between stock rankings less pronounced, thus, less likely 
to highly rank a riskier stock that might jump in price by a 
large margin. Similarly, the ensembles are amalgams of 
the other models probabilities, and thus while individual 
models are likely to hone in on a specific signal that might 
cause a risky stock to be selected for, the averaging over 
other models makes for a robust, yet less risky approach 
to stock selection. 

Cumulative return in Figure 2a and b depict the relative 
performance of classification and prediction models, 
respectively, in relation to the KOSPI 200 benchmark. 
The growth periods, such as that leading out of the 2008 
financial crisis, are the highest rallying periods for the ML 
algorithms with respect to the benchmark. The 
outperformance of the classification models over time 
becomes clearer when comparing the two figures. Within 
the classification models in Figure 2a, the deep neural 
network clearly outperforms the other models as time 
processes, while conversely, the underperformance in 
returns of the gradient boosted tree model over time 
becomes clearer. Analogously, the gradient boosted tree 
in Figure 2b also clearly underperforms the other 
prediction models.  

Table 2 depicts the cumulative return of all models 
using the last market day in 2003 as the initial investment 
period. The cumulative return is calculated as the 
simulated returns accumulated since the initial 
investment period. While the prediction models contend 
with the classification models for the first few years, a 
distinct outperformance of the classification models 
begins, starting from 2008. In nearly every case after 
2008, the classification models outperform their 
prediction counterpart. We surmise that there are two 
main reasons for this. First, over short time horizons, 
subtleties have a strong effect on the performance of the 
models, while longer time horizons give more reliability in 
the performance outcomes. Secondly, the classification 

models outperform particularly during periods of growth, 
and therefore, the bull market following the 2008 financial 
crisis leads the classification models to a rise in 
performance that the prediction models cannot overtake. 
 
 
DISCUSSION 
 
The outperformance of classification models over 
prediction models corroborates the findings of Leung et 
al. (2000). Leung et al. compared level predictions and 
classification models on the S&P 500, FTSE 100, and 
Nikkei 225. Their research concluded that the 
classification models are superior to level estimation 
techniques by the measures of both predicting stock price 
movement direction and by simulated returns. 

Using machine learning models trained on price lags 
was also utilized by Krauss et al. (2017) to simulate 
trades on selected stocks. Testing similar machine 
learning models on the Korean KOSPI 200, this 
technique yielded high returns for this study. In line with 
these results, Krauss et al. found that their model beat 
the S&P 500 index by large margins as well. Their 
research found that using asset concentrations of 15 
stocks yielded the highest return, and diluting the portfolio 
concentration resulted in lower returns, consistent with 
our results.  

Whereas Krauss et al. (2017) found that the equally-
weighted ensemble performed the highest returns on the 
S&P 500, research on the KOSPI 200 revealed 
otherwise. While ensemble results were by no means 
bad on the KOSPI 200, the ensembles did not outperform 
all other models. It is expected that this result is due to 
the averaging of probabilities on a smaller set of assets, 
that is, 200 rather than 500. The discrimination between 
the assets in the KOSPI 200 is not very large, so the 
averaging results in very similar results in the ensemble.  
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It is expected that the model used by Krauss et al. (2017) 
had more substantial differences between probabilities of 
the classifier models, which would result in a more 
distinctive advantage of using an ensemble. Therefore, 
using a larger book of assets to train on appears to have 
a higher benefit for the ensemble results. 
 
 
CONCLUSION 
 
Features generated using time lags of adjusted closing 
prices are effective at selecting the daily winners of the 
KOSPI 200 constituents. Using several machine learning 
algorithms trained only on daily adjusted closing price 
data, the machine learning models achieved annual 
returns several times higher than the KOSPI 200 Index. 
Despite the extreme low-growth nature of the KOSPI 200, 
the machine learning models still obtained returns rivaling 
those of the high growth S&P500 over the same period. 
The methodology therefore is shown to be an effective 
StatArb methodology even in an extremely low-growth 
market using only limited data - daily adjusted close 
prices only. 
By comparing the performance of the classification 
models with their prediction model counterparts, it 
becomes apparent that the classification models edge out 
the prediction models by a small, but consistent margin. 
Since the prediction models are ranking stocks based on 
point predictions and do not incorporate the uncertainty in 
the point estimates, there is a high level of noise that is 
likely confounding the ranking of stocks per day. 
Classification models are ranked on probabilities of 
outperformance which indirectly incorporates the 
reliability of the estimates being above a given point - in 
our case, that point is the median of the following days’ 
expected returns. 

Classification models outperform their corresponding 
prediction models at most portfolio concentrations with 
few exceptions in terms of annualized return, however 
the annualized deviations are nearly identical between 
analogous models. In fact, the annualized deviations are 
higher than that of the benchmark at most tested portfolio 
concentrations, yet downside deviation is not notably 
different from the benchmark. This is indicative that the 
machine learning models have higher upside deviation 
than the market while not substantially improving on the 
downside deviation. Thus, lending evidence for a need of 
better portfolio weightings after asset selection. 

In terms of ranking the models by risk-adjusted return, 
the gradient-boosted trees were the lowest performing 
models with the lowest average returns, despite the 
encouraging distributions of those returns with relatively 
low kurtosis and high skewness. The ensembles 
performed better than the gradient-boosted tree models, 
but since both ensembles are based on the averaging of 
other models, their output is not impressive in terms of 
returns but did manage to minimize the downside  

 
 
 
 
deviation slightly better than nearly all other models. 
Deep neural networks performed very well for 
classification, and moderately well for prediction. The 
classification deep neural network outperformed all 
models in terms of annualized returns and lower 
downside deviation, and was reliable in maintaining high 
performance over a wide range of asset concentrations. 
There is some contention in the regression and random 
forest models but the random forests tend to outperform 
the regression models at most portfolio concentrations. 
Random forests remain robust to whether the dependent 
variable is a classification or value prediction. 
 
 
LlMITATIONS AND FUTURE STUDY 
 
This study focused on the comparison of machine 
learning techniques for asset selection on the KOSPI 200 
constituents over an out-sample period of twelve years. 
The focus on asset selections in the specified market 
leaves several notable limitations, while the results 
indicate several questions for further study. By using the 
KOSPI 200 as the target market, there are limitations in 
generalizability to other markets. We expect that machine 
learning models such as the DNNs would perform better 
in less homogenous markets, such as the KOSDAQ, 
while the performances of more simplistic models like the 
regressions would suffer in such markets. While extant 
studies have shown the effectiveness of similar models 
on the S&P500 and Nikkei for example, more research is 
needed to corroborate the findings in other markets. 

Similarly, using the KOSPI 200 is limited in terms of the 
asset type. An equity market was chosen due to the high 
liquidity and generally high returns; however, the models 
were not tested on other asset types nor other 
transaction types, such as shorting. There is an 
expectation that these models can be adapted to other 
asset types with relatively minor adjustments. It is 
important to keep in mind that the models should be 
considered as a ceiling on performance since they do not 
consider friction costs, realized transaction costs or other 
associated fees. While Table 1b attempts to estimate a 
realistic transaction cost, it is not a realized transaction 
cost, so real results may differ. Furthermore, using the 
daily adjusted close price is a proxy for what daily returns 
are expected to be. However, critical investors buying or 
selling extremely large amounts of shares using such 
techniques may have an impact on the prices of those 
assets and create a positive or negative bias in actuality. 
A similar effect can occur from many investors using 
related algorithms, which can potentially result in a 
positive or negative feedback loops as can be seen with 
high frequency trading algorithms that cause flash 
crashes occasionally. 

Finally, results may improve with better training of the 
models and by introducing asset weight allocation 
techniques to the selected stocks, which is typical in the  



 
 
 
 
field. Models for this study were trained using reasonable 
assumptions about parameter estimations informed by 
previous research and extant literature. The chosen 
models were selected based on their diversity from one 
another and intended to be relatively simple for purposes 
of generalization of the results. It is expected that variants 
on the presented models offer higher performance, such 
as improving the ensemble models by using weighted 
soft voting or weighted averaging based on the other 
models’ performances. Asset weight optimization should 
also be executed on the backend of the model, such as 
mean-variance or CVaR optimizations. The potential 
improvements for weight optimization is expected to be 
significant, particularly in terms of minimizing the 
downside risk, since the main goal of training the 
machine learning algorithms was simply to maximize 
return. The results of this research will help push the 
understanding of asset selection models using machine 
learning algorithms ever so slightly forward in hopes that 
it will help both academics and practitioners in the field. 
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