|
Article abstract
International Journal of Biotechnology and Food Science
Research Article | Published December 2016 | Volume 4, Issue 5, pp. 72-80
Recent advances in molecular tactics for crop improvements
|
Iqra Ghaffar1
Faiza Shams1
Aleena Khalid2
Fareeha Ashraf1
Raima Rehman2
Muhammad Irfan Fareed3*
Email Author
Tel: 008613093458813.
|
1. Virology Lab, Centre of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan.
2. Plant Biotechnology Lab., Centre of Excellence in Molecular Biology Punjab University, Lahore, Pakistan.
3. Department of Genetics, Lab 916, School of life Sciences, University of Science and Technology of China, Hefei 230027, China.
|
………………..........................……………………............……....……..................................................………...……..…………
Citation: Ghaffar I, Shams F, Khalid A, Ashraf F, Rehman R, Fareed MI (2016). Recent advances in molecular tactics for crop improvements. Int. J. Biotechnol. Food Sci. 4(5): 72-80.
………………..........................……………………............……....……..................................................………...……..…………
Abstract
With the increasing volume of world population there is relative increased demand of food. Conventional breeding methods are no longer viable to overcome this situation. The fields of biotechnology and molecular biology have revolutionized agriculture and farming methods. To improve the current agronomic practice, the conventional plant breeding techniques are being integrated with the novel molecular methods in a very impetus manner. In this review we discuss some molecular approaches and biotechnology tools for the production of diverse and better yielding plant varieties. Plants resistant to biotic and abiotic stress, tolerant to drought or other harsh environmental conditions has been produced. The genetic architecture of target plants can be altered and improved by using transgenes. Advanced functional genomics studies provide better understanding of plant genome and help in modifying it. RNA interference, next generation
sequencing (NGS) and nanotechnology have become promising techniques for improving crop according to future needs.
Keywords
Tissue culture
mutagenesis
transformation RNA interference next generation sequencing nanotechnology
References
Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014). Nanotechnology, a new frontier in Agriculture. Adv. life Sci. 1(3):129-138.
Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814):796.
Ariyadasa R, Stein N (2012). Advances in BAC-based physical mapping and map integration strategies in plants. J. BioMed Res. 2012.
Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M (2007). Control of coleopteran insect pests through RNA interference. Nature biotechnol. 25(11):1322-1326.
Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363-366.
Brown AHD (1989). The use of plant genetic resources. Illustrated edn. Cambridge University Press.
Brown D, Thorpe T (1995). Crop improvement through tissue culture. World J. Microbiol. Biotechnol. 11(4):409-415.
Consortium TG (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635-641.
Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T (2008). Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nuc. Acids Res. 36(19):e122-e122.
Davuluri GR, Van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nature Biotechnol. 23(7):890-895.
De Filippis L (2014). Crop improvement through tissue culture. Improvement of Crops in the Era of Climatic Changes, edn: Springer. pp. 289-346.
Dunwell JM (2000). Transgenic approaches to crop improvement. J. Exp. Bot. 51(suppl 1):487-496.
Eady CC, Kamoi T, Kato M, Porter NG, Davis S, Shaw M, Kamoi A, Imai S (2008). Silencing onion lachrymatory factor synthase causes a significant change in the sulfur secondary metabolite profile. Plant Physiol. 147(4):2096-2106.
Edwards D, Batley J (2010). Plant genome sequencing: applications for crop improvement. Plant Biotechnol. J. 8(1):2-9.
Egan AN, Schlueter J, Spooner DM (2012). Applications of next-generation sequencing in plant biology. Am. J. Biotech. 99(2):175-185.
Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001). RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proceedings of the National Acad. Sci. 98(23):13437-13442.
Feldmann KA (2006). Steroid regulation improves crop yield. Nature Biol. 24(1):46-47.
Gamborg OL, Phillips G (2013). Plant cell, tissue and organ culture: fundamental methods. edn. Springer Science.
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010). Food security: the challenge of feeding 9 billion people. Science 327(5967):812-818.
Goodman RM, Hauptli H, Crossway A, Knauf VC (1987). Gene transfer in crop improvement. Science 236(4797):48-54.
Gupta P (2008). Ultrafast and low-cost DNA sequencing methods for applied genomics research. Proceedings of the Nat. Acad. Sci. Ind. Sec. B-Biol. Sci. 78:91-102.
Hamilton CM, Frary A, Lewis C, Tanksley SD (1996). Stable transfer of intact high molecular weight DNA into plant chromosomes. Proceedings of the National Acad. Sci. 93(18):9975-9979.
Hammond SM, Bernstein E, Beach D, Hannon GJ (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775): 293-296.
Hansen G, Wright MS (1999). Recent advances in the transformation of plants. Trends in plant Sci. 4(6):226-231.
Hazell P, Wood S (2008). Drivers of change in global agriculture. Philosophical Transactions of the Royal Society B: Biol. Sci. 363(1491):495-515.
Hudson ME (2008). Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol. Ecol. Res. 8(1):3-17.
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 293(5531):834-838.
Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463-467.
Jain SM (2001). Tissue culture-derived variation in crop improvement. Euphytica 118(2):153-166. Jain SM (2010). Mutagenesis in crop improvement under the climate change. Roma Biotechnol. L. 15(2):88-106.
Jiang C-J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H (2009). Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Molecular plant-microbe interactions 22(7):820-829.
Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015). Small RNAs in plants: recent development and application for crop improvement. Frontiers in Plant Sci. 6:208.
Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T (2003). Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. The Plant Cell 15(6):1455-1467.
Li D-H, Hui L, Yang Y-L, Zhen P-P, Liang J-S (2009). Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci. 16(1):14-20.
Maluszynski M (2001). Officially released mutant varieties - the FAO/IAEA Database. Plant Cell, Tissue and Organ Culture 65(3):175-177.
Mao Y-B, Cai W-J, Wang J-W, Hong G-J, Tao X-Y, Wang L-J, Huang Y-P, Chen X-Y (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature biotechnol. 25(11):1307-1313.
Meli VS, Ghosh S, Prabha T, Chakraborty N, Chakraborty S, Datta A (2010). Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proceedings of the Nat. Acad. Sci. 107(6):2413-2418.
Mochida K, Shinozaki K (2010). Genomics and bioinformatics resources for crop improvement. Plant and Cell Physiol. 51(4):497-523.
Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, De Vos CR (2006). A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant physiol. 141(4):1205-1218.
Mroginski L, Kartha K (1984). Tissue culture of legumes for crop improvement. Plant Breed. Rev. 2:215-264.
Neuhaus G, Spangenberg G (1990). Plant transformation by microinjection techniques. Physiologia Plantarum 79(1):213-217.
Nordborg M, Weigel D (2008). Next-generation genetics in plants. Nature 456(7223):720-723.
Ossowski S, Schwab R, Weigel D (2008). Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant J. 53(4): 674-690.
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551-556.
International Rice Genome Sequencing Project, IRGSP (2005). The map-based sequence of the rice genome. Nature 436(7052):793-800.
Qiao F, Yang Q, Wang C-L, Fan Y-L, Wu X-F, Zhao K-J (2007). Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica 158(1-2):35-45.
Rahong S, Yasui T, Yanagida T, Nagashima K, Kanai M, Klamchuen A, Meng G, He Y, Zhuge F, Kaji N (2014). Ultrafast and wide range analysis of DNA molecules using rigid network structure of solid nanowires. Sci. Rep. 4:5252.
Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006). High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proceedings of the National Academy of Sciences of the United States of America 103(10):3546-3551.
Roychowdhury R, Tah J (2013). Mutagenesis - A potential approach for crop improvement. In: (ed)^(eds). Crop Improvement, edn: Springer. pp. 149-187.
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010). Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178-183.
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112-1115.
Schijlen EG, de Vos CR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, Van Tunen AJ, Bovy AG (2007). RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol. 144(3):1520-1530.
Schwind N, Zwiebel M, Itaya A, Ding B, WANG MB, Krczal G, Wassenegger M (2009). RNAi‐mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol. plant Pathol. 10(4):459-469.
Service RF (2006). Gene sequencing. The race for the $1000 genome. Science (New York, NY) 311(5767):1544.
Sharma HC, Gill BS (1983). Current status of wide hybridization in wheat. Euphytica 32(1):17-31.
Shepherd DN, Martin DP, Thomson JA (2009). Transgenic strategies for developing crops resistant to geminiviruses. P. Sci. 176(1):1-11.
Sijen T, Kooter JM (2000). Post-transcriptional gene-silencing: RNAs on the attack or on the defense? Bioessays 22(6):520-531.
Sledz C, Williams B (2004). RNA interference and double-stranded-RNA-activated pathways. Biochem. Soc. Transact. 32(6):952-956.
Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006). Engineering cotton seed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proceedings of the Nat. Acad. Sci. 103(48): 18054-18059.
Van K, Rastogi K, Kim K, Lee S (2013). Next-generation sequencing technology for crop improvement. SABRAO J Breed. Genet. 45(1):84-99.
Varshney RK, Graner A, Sorrells ME (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Sci. 10(12):621-630.
Varshney RK, Hoisington DA, Tyagi AK (2006). Advances in cereal genomics and applications in crop breeding. Trends in Biotechnol. 24(11):490-499.
Varshney RK, Nayak SN, May GD, Jackson SA (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnol. 27(9):522-530.
Vaucheret H (2008). Plant argonautes. Trends in Plant Sci. 13(7):350-358.
Wessler SR (2006). Transposable elements and the evolution of eukaryotic genomes. Proceedings of the Nat. Acad. Sci. 103(47):17600-17601.
Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79-92.
Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007). Identification of drought-induced microRNAs in rice. Biochem. Biophy. Res. Com. 354(2):585-590.
Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161(3):1375-1391.
|
|
|