Article abstract

Journal of Agricultural and Crop Research

Research Article | Published April 2021 | Volume 9, Issue 4. pp. 93-103.

doi: https://doi.org/10.33495/jacr_v9i4.20.209

 

Effects of mycorrhizal seeding substrate on salinity and biomass allocation of processing tomatoes in salinized soil

 



 

 

Gu Huimin1

Chen Bolang1*

Sun Jin2

 

Email Author




 

1. Key Laboratory of Northwest Oasis Agriculture Environment, Ministry of Agriculture, College of Pratacultural and Environmental Sciences, Xinjiang Agricultural University, Urumqi 830052, China.

2. College of Horticulture, Nanjing Agricultural University, Nanjing Jiangsu 210095, China.







……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…

Citation: Huimin G, Bolang C, Jin S (2021). Effects of mycorrhizal seeding substrate on salinity and biomass allocation of processing tomatoes in salinized soil. J. Agric. Crop Res. 9(4):93-103. doi: 10.33495/jacr_v9i4.20.209.

……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…



 Abstract 


In combination with mild (S), moderate (M) and severe (H) salinized soils, two different seedling substrates were set up, namely: non-mycorrhized seedling substrate (n) and mycorrhizal seedling substrate (m), and a total of six treatments were used to study the photosynthetic characteristics and biomass allocation of processed tomato during the whole growth period. The results showed that the mycorrhizal treatment increased the yield, photosynthetic parameters, root morphology, and configuration and mycorrhizal infection rate of processed tomato in different salinized soils, which increased the dry weight of aboveground and underground parts by 6.7-202.0% and 0.3-150.0% respectively. The root-to-shoot ratio increased by 4.3 to 32.3%. The mycorrhizal seedling substrate can improve the plant biomass and yield by promoting the photosynthesis, root growth and root-shoot ratio of processed tomato under salt stress, and finally improve the salt tolerance of processed tomato.

Keywords  Salinized soil   seedling substrate   mycorrhiza   photosynthetic parameters   biomass  

 

 

Copyright © 2021 Author(s) retain the copyright of this article.or(s) retain the copyright of this article.

This article is published under the terms of the Creative Commons Attribution License 4.0

 

 

 
References 

 

Aldênia MMDA, Vânia FFG, Filho PFM, Lacerda CFD, Freitas ED (2016). Influence of salinity on the development of the banana colonised by arbuscular mycorrhizal fungi. Rev. Cienc. Agron. 47(3):421-428.

 

Ait-El-Mokhtar M, Laouane RB, Anli M, Boutasknit A, Wahbi S, Meddich A (2019). Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hortic. 253:429-438.

 

Bertolazi AA, Folli-Pereira MDS, Caione G, Passamani LZ, Colodete CM, Souza SBD, Ramos AC, Rasool N, Júnior GDFS, Schoninger EL (2018). Linking plant nutritional status to plant-AMF interactions. Plant Microbiome: Stress Response. 5:351-384.

 

Brundrett MC (2002). Coevolution of roots and mycorrhizas of land plants. New Phytol. J. 154:275-304.

 

Boris RH, Hans LG (2015). Arbuscular mycorrhiza inoculum reduces root respiration and improves biomass accumulation of salt stressed Ulmus glabra seedlings. Urban For. Urban Green. J. 14(2):432-437.

 

Chen ZK, Niu YP, Ma H, Hafeez A, Luo HH, Zhang W F (2017). Photosynthesis and biomass allocation of cotton as affected by deep-layer water and fertilizer application depth. Photosynthetica. J. 55(4):638-647.

 

Carmo-Silva E, Andralojc PJ, Scales JC, Driever SM, Mead A, Lawson T, Raines AC, Parry AJM (2017). Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. Exp. Bot. 68(13):3473-3486.

 

Demir K, Basak H, Okay FY, Kasim R (2011). The effect of endo-mycorrhiza (VAM) treatment on growth of tomato seedling grown under saline conditions. Afr. J. Agric. Res. 6:3326-3332.

 

Ding YE, Fan QF, He JD, Wu HH, Zou YN, Wu QS, Kuča K (2020). Effects of mycorrhizas on physiological performance and root TIPs expression in trifoliate orange under salt stress. Arch. Agron. Soil Sci. 66(2):182-192.

 

Elhindi KM, El-Din AS, Elgorban AM (2017). The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 24:170-179.

 

Giri B, Kapoor R, Mukerji KG (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biology Fertilizer Soils. 38(3):170-175.

 

Ghazanfar B, Cheng ZH, Ahmad I, Khan AR, Liu HQ, Ding H, Fang YC (2015). Synergistic and individual effect of Glomus etunicatum root colonization and acetyl salicylic acid on root activity and architecture of tomato plants under moderate NaCl stress. Pak. J. Bot. 47(6):2047-2054.

 

Huang LY, Li ZZ, Liu Q, Pu GB, Zhang YQ, Li J (2019). Research on the adaptive mechanism of photosynthetic apparatus under salt stress: New directions to increase crop yield in saline soils. Ann. Appl. Biol. 175(1):1-17.

 

Hetrick BAD, Wilson GWT, Cox TS (1992). Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can. J. Bot. 70(10):2032-2040.

 

Koide RT, Mosse B (2004). A history of research on arbuscular mycorrhizal. Mycorrhiza. 14(3):145-163.

 

Langeroodi ARS, Farshad G, Teena D (2017). Alleviatory activities in mycorrhizal tobacco plants subjected to increasing chloride in irrigation water. Ital. J. Agron. 12(1):8-16.

 

Liu CG, Dai Z, Cui MY, Lu W, Sun HG (2018). Arbuscular mycorrhizal fungi alleviate boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought. Environ. Pollut. 240:557-565.

 

Liu HG, Wang YJ, Hart M, Chen H, Tang M (2016). Arbuscular mycorrhizal symbiosis regulates hormone and osmotic equilibrium of Lycium barbarum L. under salt stress. Mycosphere. 7(6):828-843.

 

Murugesan C, Mak C, Kiyoon K, Sundaram S, Tongmin S (2019). Impact of Arbuscular Mycorrhizal Fungi on Photosynthesis, Water Status, and Gas Exchange of Plants under Salt Stress-A Meta-Analysis. Front. Plant Sci. 10:457.

 

Martínez-Gutiérrez GA, Morales I, Aquino-Bolaños T, Escamirosa-Tinoco C, Hernández-Tolentino M (2016). Substrate volume and nursery times for earliness and yield of greenhouse tomato. Emir. J. Food Agric. 28(12):897-902.

 

 

Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annu. J. Rev. Plant Biol. 59(1):651-681.

 

Maia JTLS, Bonfim FPG, Guanabens REM, Trentin R, Martinez, Herminia EP, Pereira, Paulo RG, Phillips JM, Hayman DS (2014). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transact. Brit. Mycol. Soc. 1970, p. 55.

 

Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016). Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza. 26(7):673-684.

 

Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2009). Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress. Can. J. Microbiol. 55(7):879-886.

 

Xu H, Lu Y, Tong S (2018). Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emir. J. Food Agric. 30(3):199-204.

 

Xue MZ, Zhen PH, Huan W, Yi FJ, Yu PL (2014). Arbuscular Mycorrhizal Fungi (AMF) on Growth and Nutrient Uptake of Beach Plum (Prunus maritima) under Salt Stress. Appl. Mech. Mater. pp. 268-272.

 

Yasuaki A, Tomomi I, Hajime T, Ayumi K (2019). Photosynthesis, respiration, and growth patterns of Rhizophora stylosa seedlings in relation to growth temperature. Trees. 33(4):1041-1049.

 

Ye L, Zhao X, Bao EC, Cao K, Zou ZR (2019). Effects of Arbuscular Mycorrhizal Fungi on Watermelon Growth, Elemental Uptake, Antioxidant, and Photosystem II Activities and Stress-Response Gene Expressions under Salinity-Alkalinity Stresses. Front. Plant Sci. 10:863.

 

Zhang T, Hu Y, Zhang K, Tian C, Guo J (2018). Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind. Crop. Prod. 117:13-19.