Article abstract

Journal of Agricultural and Crop Research

Research Article | Published January 2021 | Volume 9, Issue 1. pp. 1-7.

doi: https://doi.org/10.33495/jacr_v9i1.20.161

 

Effect of drying temperature on physical properties of fermented dried locust bean flour

 



 

 

Idowu D. O*

Olaniran J. A.

Onifade T. B.

 

Email Author



 

Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.






……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…

Citation: Idowu DO, Olaniran JA, Onifade TB (2021). Effect of drying temperature on physical properties of fermented dried locust bean flour. J. Agric. Crop Res. 9(1):1-7. doi: 10.33495/jacr_v9i1.20.161.

……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…



 Abstract 


Drying plays a major role in food processing as it reduces the activities of micro-organisms and hence preserve food from deterioration. It has been reported that drying imposes new changes to the physical properties of the product which may in turn affect its handling, packaging and usability. The present research work, therefore aimed to evaluate the effect different drying temperature on physical properties of fermented dried locust bean flour. The local fermented locust bean was dried at different temperature of 50, 60, 70, 80 and 90°C at airflow rate of 1.8 kg/min. then milled and Investigated on final moisture content, bulk density, water retention ratio, flour wetting time, and swelling capacity of the fermented dried locust bean flour. The effect of drying temperature was found to be significant (p ≤ 0.05) on all the physical properties investigated except bulky density (0.638 g/ml). As the drying temperature increased from 50 to 90°C, final moisture content decreased significantly from 5.62 to 3.52%. Whereas, water retention ratio, wetting time, swelling capacity, porosity ratio and water retention ratio increase from 1.96 to 2.5 m/g, 153 to 299 s, 2.26 to 2.44, 0.81 to 0.91 and 1.96 to 2.5 m/g respectively. These findings could prove useful in the modeling of locust bean drying and to flour millers and pelletizer who may want to use locust bean flour as a sole or composite flour for different production and application.

Keywords  Fermented locust bean flour   physical properties   modeling   pelletizer   miller   drying temperature  

 final moisture content   

 

 

Copyright © 2021 Author(s) retain the copyright of this article.or(s) retain the copyright of this article.

This article is published under the terms of the Creative Commons Attribution License 4.0

 

 

 
References 

 

AACC (2000). American Association of Cereal Chemist method 46-30, 10th Edition. The Association Street Paul M.N.

 

Adejuyitan JA, Otunola ET, Akande EA, Bolarinwa IF, Oladokun FM (2009). Some Physicochemical Properties of Flour Obtained from Fermentation of Tigernut (Cyperus esculentus) Sourced from a Market in Ogbomoso, Nigeria. Afr. J. Food Sci. 3(2):51-55.

 

Adeleke RO, Odedeji JO (2010). Functional Properties of Wheat and Sweet Potato Flour Blends. Pak. J. Nutr. 9(6):535-538.

 

Akubor PL, Badifu GLO (2004). Chemical Composition, Function Properties and Baking Potential of African Breadfruit Kernel and Wheat Flour Blends. Int. J. Food Sci. Technol. 39:223-229.

 

Alabi DA, Akinsulire OR, Sanyaolu MA (2005). Quantitative Determination of Chemical and Nutritional Composition of Parkia biglobosa (Jacq.) Benth. Afr. J. Biotechnol. 4(8):812-815.

 

Appiah F, Oduro I, Ellis WO (2011). Functional Properties of Artocarpus aitilis Pulp Flour as Affected by Fermentation. Agric. Biol. J. North Am. 2(5): 773-779.

 

Camel L, Paul AFH, Valere D, Abel BH, Abdou MOA, Flora VK, Sanni AD, Latifou L (2019). Physico-Functional and sensory properties of flour and Bread made from composite Wheat and Cassava. Pak. J. Nutr. 18(6):538-547.

 

Campbell-Platt G (1980). African Locust Beans [Parkia spp.] and its West African Fermented Food Product, ‘Dadadawa’. Ecol. Food Nutr. 9: 123-132.

 

Codjia T, Assogbadjo E, Ekué R (2003). Diversité et valorisation au niveau local des ressources végétales forestières alimentaires au Bénin, Cahiers d’agriculture, 12(5):321-331.

 

Cook JA, VanderJagt DJ, Pastuszyn A, Moukaila G, Glew RS, Millson M, Glew RH (2000). Nutrient and Chemical Composition of 13 Wild Plant Foods of Niger. J. Food Composit. Anal. 13:83-92.

 

Dike EN, Odunfa SA (2003). Microbiological and Biochemical Evaluation of a Fermented Soybean Product. J. Food Sci. Technol. 40:606-610.

 

Elemo GN, Elemo BO, Oladunmoye OO, Erukainure OL (2011). Comprehensive Investigation into the Nutritional Composition of Dehulled and Defatted African Locust Bean Seed (Parkia biglobosa). Afr. J. Plant Sci. 5(5):291 295.

 

Eke OS, Akobundu ENT (1993). Functional Properties of African Yam Bean (Sphenostylis stenocarpa) Seed Flour as Affected by Processing. Food Chem. 48:337-340.

 

Idowu DO, Abegunrin TP, Abolusodun AS, Oyediran HO (2014). Effect of Some Processing Variables on Some Selected Functional Properties of Plantain Flour. Int. J. Adv. Biotechnol. Res. 5(4):659-664.

 

Idowu DO (2008). Influence of Some Processing Variables on Some Physical Properties of Fermented Cassava Flour. Afr. J. Sci. Technol. Res. 7(2):74-79.

 

Ijarotimi OS (2012). Influence of Germination and Fermentation on Chemical Composition, Protein Quality and Physical Properties of Wheat Flour. J. Cereals Oilseeds. 3(3): 35-47.

 

Ikenebomeh MJ, Kok R (1984). Mass Balance of the Processing and Fermentation of the African Locust Bean (Parkia filicoidea Welw.). J. Can. Instit. Food Sci. Technol. 17:48-50.

 

Jildeh C, Papandreou C, Abu Mourad T (2010). Assessing the Nutritional Status of Palestinian Adolescents from East Jerusalem: a School-based Study 2002-2003. J. Trop. Pediatr. 31:89-94.

 

Kartuna D, Noel D, Dilip K (1998). Food and Nutrition Bulleting, United Nation University. 17(2).

 

Musuvadi RM, Rose PKA, Sajid A (2015). Flow-Specific Physical Properties of Coconut Flour. Int. Agrophys. 29:1-7.

 

 Nelson-Quartey FC, Amagloh FK, Oduro I, Ellis WO (2007). Formulation of an Infant Food Based on Breadfruit (Artocarpus altillis) and Breadnut (Artocarpus camans). Acta Horticulturae. (ISHS) 757:212-224.

 

National Research Council (NRC) (2006). Lost Crops of Africa Volume II: Vegetables. Chapter II Locust bean Washington, DC: The National Academics Press.https:www.nap.edu/read/chapter/13.

 

Odoemelan SA (2003). Chemical Composition and Functional Properties of Conophor Nut Flour (Tetracarpidium conophorum) Flour. Int. J. Food Sci. Technol. 38:729-734.

 

Odunfa SA (1986). Dawadawa. In: Legume-Based Fermentation Foods. Eds N.R. Reddy, M.D. Pierson, D.K. Salunkhe. CRS Press, Boca Raton, Florida, pp. 173-189.

 

Oladele Ak, Aina JO (2007). Chemical Composition and Functional Properties of Flour Produced from two Varieties of Tiger Nut (Cyperus esculentus). Afr. J. Biotechnol. 6(21):2473-2476.

 

Osungbaro TO, Jimoh D, Osundeyi E (2010). Functional and Pasting Properties of Composite Cassava- Sorghum Flour Meals. Agric. Biol. J. North Am. 1(4):715-720.

 

Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009). Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.

 

Shi J, Maguer ML (2000). Lycopene in Tomatoes: Chemical and Physical Properties Affected by Food Processing. Crit. Rev. Food Sci. Nutr. 40(1):1-4.

 

Sina S, Traore SA (2002). Parkia biglobosa (Jacg.) R.Br. ex G. Don. In: Oyen, L.P.A: Lemmens, R.H.M.J. (eds), PROTA (Plant Resources of Tropical Africa/Resources vegetables de l”Afrique tropicale). Wabeningen, Netherlands. http://usesplantnet. Project.org/en/Parkia biglobosa (PRTA).