Article abstract

Journal of Agricultural and Crop Research

Research Article | Published May 2021 | Volume 9, Issue 5. pp. 134-141.

doi: https://doi.org/10.33495/jacr_v9i5.20.205

 

Effect of Light Intensity and Wavelength on Anthocyanin Biosynthesis in Purple Rice Seedlings

 



 

 

Shuyan Kou1

XiangSheng Ke2

Ping Huang1

Qiongyao Gu1

Huahui Li1

Zhigang Wu1

Weihua Liu1

Zhenhua Zhu1

Zou Qian1

Xin Hou2

Pingrong Yuan*1

 

Email Author



 

1. Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China.

2. National Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China.epartment of Crop Science, University of Calabar, PMB 1115 Calabar, Cross River State, Nigeria.







……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…

Citation: Kou S, Ke X, Huang P, Gu Q, Li H, Wu Z, Liu W, Zhu Z, Qian Z, Hou X, Yuan P (2021). Effect of Light Intensity and Wavelength on Anthocyanin Biosynthesis in Purple Rice Seedlings. J. Agric. Crop Res. 9(5):134-141. doi: 10.33495/jacr_v9i5.20.205.

……....…...………..........................…………....………............…............……...........……........................................................………...……..…....……....…



 Abstract 


Anthocyanin-rich purple rice is considered to be a particularly healthy natural food. To investigate anthocyanin biosynthesis in purple rice, two inbred lines (YDD1 and YDD2) were selected to undergo different light stress treatments. The accumulation of anthocyanin in purple rice leaves was mainly regulated by light intensity and wavelength. Compared to Nipponbare, the concentration of anthocyanin in purple rice was significantly induced under high light intensity (150 µmol m-2 s-1) and blue light (470nm light wavelength). High light intensity and 470 light wavelength also induced the transcription of several genes, including the anthocyanin biosynthesis genes OsCHS, OsCHI, OsF3H, OsDFR, and OsANS. Two regulatory gene products, OsB1 and OsB2, were significantly and differentially expressed between YDD1 and YDD2, indicating a complex regulated pathway in purple rice.

Keywords  Anthocyanin   genes expression level   light intensity   light wavelength   purple rice  

 

 

Copyright © 2021 Author(s) retain the copyright of this article.or(s) retain the copyright of this article.

This article is published under the terms of the Creative Commons Attribution License 4.0

 

 

 
References 

 

Ahmad M, Lin CT, Cashmore AR (1995). Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. The Plant J. 8(5):653-658.

 

Albert NW, Lewis DH, Zhang HB, Irving LJ, Jameson PE, Davies KM (2009). Light-induced vegetative anthocyanin pigmentation in Petunia. J. Exper. Bot. 60(7):2191-2202.

 

Brenda Winkel-Shirley (2002). Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5(3):218-223.

 

Chen LH, Huang YN, Xu M, Cheng ZX, Zhang DS, Zheng JG (2016). iTRAQ-based quantitative proteomics analysis of black rice grain development reveals metabolic pathways associated with anthocyanin biosynthesis. PLoS ONE. 11(7):1-25.

 

Chunthaburee S, Sanitchon J, Pattanagul W, Theerakulpisut P (2015). Application of Exogenous Spermidine (Spd) Improved Salt Tolerance of Rice at the Seedling and Reproductive Stages. Procedia Environ. Sci. 29:134.

 

Cominelli E, Gusmaroli G, Allegra D, Galbiati M, Wade HK, Jenkins GI, Tonelli C (2008). Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J. Plant Physiol. 165(8):886-894.

 

Franklin KA, Quail PH (2010). Phytochrome functions in Arabidopsis development. J. Exper. Bot. 61(1):11-24.

 

Gould KS (2004). Nature’s Swiss Army Knife: the Diverse Protective Roles of Anthocyanins in Leaves. J. Biomedic. Biotechnol. 5:314-320.

 

Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011). Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J. Exper. Bot. 62(8):2465-2483.

 

Hoecker U, Xu Y, Quail PH (1998). SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. The Plant cell. 10(1):19-33.

 

Irani NG, Grotewold E (2005). Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells. BMC Plant Biol. 5:7-21.

 

Kim BG, Kim JH, Min SY, Shin KH, Kim JH, Kim HY, Ryu SN, Ahn JH (2007). Anthocyanin content in rice is related to expression levels of anthocyanin biosynthetic genes. J. Plant Biol. 50(2):156-160.

 

Kovinich N, Kayanja G, Chanoca A, Otegui MS, Grotewold E (2015). Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signaling Behavior. 10(7):1-7.

 

Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U(1981). Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth. Res. 2:115-141.

 

Liu X, Sun X, Wang WY, Ding HF, Liu W, Li GX, Jiang MS, Zhu CX, Yao FY (2012). Fine mapping of Pa-6 gene for purple apiculus in rice. J. Plant Biol. 55(3): 218-225.

 

Park JS, Choung MG, Kim JB, Hahn BS, Kim JB, Bae SC, Roh KH, Kim YH, Cheon CI, Sung MK, Cho KJ (2007). Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Reports, 26(4): 507-516.

 

Petroni K, Tonelli C (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 181:219-229.

 

Piazza P, Procissi A, Jenkins GI, Tonelli C (2002). Members of the c1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins. Plant Physiol. 128(3):1077-1086.

 

Reddy VS, Dash S, Reddy AR (1995). Anthocyanin pathway in rice (Oryza Sativa L): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp. Theor. Appl. Genet. 91:301-312.

 

Sakamoto W, Ohmori T, Kageyama K, Miyazaki C, Saito A, Murata M, Noda K, Maekawa M (2001). The purple (Pl) locus of rice: the Plw allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol. 42(9):982-991.

 

Shao YF, Xu FF, Tang FF, Bao JS (2013). The Temporal and Spatial Expression Pattern of Anthocynin related genes in rice (Oryza Sativa L.). J. Nuclear Agric. Sci. 27(1):9-14.

 

Shih CH, Chu H, Tang LK, Sakamoto W, Maekawa M, Chu IK, Wang MF, Lo C (2008). Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta. 228: 1043-1054.

 

Shin J, Park E, Choi G (2007). PIF3 regulates anthocyanin biosynthesis in an HY5 dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant J. 49:981-994.

 

Sun D, Huang SQ, Cai SB, Cao JX, Han P (2015). Digestion property and synergistic effect on biological activity of purple rice (Oryza sativa L.) anthocyanins subjected to a simulated gastrointestinal digestion in vitro. Food Res. Int. 78:114-123.

 

Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M (2007). HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. The Plant J. 49(3):428-441.

 

Wang G, Li HW, Lin FY, Li B, Liu SD, Li ZS (2010). High light induced anthocynin accumulation in wheat seedlings. Acta Botanica Boreali-Occidentalia Sinca. 30(4):645-651.

 

Wang Q, Han F, Zhang M, Xia M, Zhu H, Ma J, Hou M,. Tang Z, Ling W (2007). Supplementation of black rice pigment fraction improves antioxidant and anti-inflammatory status in patients with coronary heart disease. Asia Pac. J. Clin. Nutr. 16(1):295-301.

 

Yuan YX, Chiu L LW. Li (2009). Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta. 230(6):1141-1153.

 

Zhang N, Hu ZL, Chen XQ, Hou XS, Li Y, Chen GP (2008). Analysis of metabolic pathway and establishment of regulating model of anthocyanin synthesis. China Biotechnol. 28(1):97-105.

 

Zhang Y, Butelli E, Martin C (2014). Engineering anthocyanin biosynthesis in plants. Curr. Opin. Plant Biol. 6(19):81-90.

 

Zhou B, Li YH, Xu ZR, Yan HF, Homma S, Kawabata (2007). Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J. Exper. Bot. 58(7):1771-1781.

 

Zhu QL, Yu SZ, Zeng DC, Liu HM, Wang HC, Yang ZF, Xie XR, Shen RX, Tan JT, Li HY, Zhao XC, Zhang QY, Chen YL, Guo JX, Chen LT, Liu YG (2017). Development of “Purple Endosperm Rice” by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System. Molecular Plant. 10:918-929.