Adamsen FJ, Coffelt TA, Nelson JM, Barnes EM, Rice RC (2000). Method for using images from a color digital camera to estimate flower number. Crop Sci. 40:704-709.
Aquino A, Millan B, Gutiérrez S, Tardáguila J (2015). Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis. Comput. Electron. Agric. 119:92-104.
Bac CW, van Henten EJ, Hemming J, Edan Y (2014). Harvesting robots for high-value crops: State‐of‐the‐art review and challenges ahead. J. F. Robot. 31:888-911.
Bairwa N, Agrawal NK (2014). Counting of flowers using image processing. Int. J. Eng. Res. Technol. 3:775-779.
Dcunha S, Das J, Qu C (2017). Counting Apples and Oranges with Deep Learning : https://doi.org/10.1109/LRA.2017.2651944.
De Brabandere B, Neven D, Van Gool L (2017). Semantic instance segmentation with a discriminative loss function. arXiv Prepr. arXiv1708.02551.
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009). Imagenet: A large-scale hierarchical image database, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition. Ieee, pp. 248-255.
Dias PA, Tabb A, Medeiros H (2018). Apple flower detection using deep convolutional networks. Comput. Ind. 99, 17–28.
https://doi.org/10.1016/j.compind.2018.03.010.
Douarre C, Schielein R, Frindel C, Gerth S, Rousseau D (2018). Transfer learning from synthetic data applied to soil–root segmentation in x-ray tomography images. J. Imaging 4, 65.
Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q (2019). Centernet: Keypoint triplets for object detection, in: Proceedings of the IEEE International Conference on Computer Vision. pp. 6569-6578.
Dyrmann M, Mortensen AK, Midtiby HS, Jørgensen RN (2016). Pixel-wise classification of weeds and crops in images by using a Fully Convolutional neural network. Int. Conf. Agric. Eng. p. 6.
Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2010). The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88:303-338.
Girshick R, Donahue J, Darrell T, Malik J (2015). Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38:142-158.
He K, Zhang X, Ren S, Sun J (2016). Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770-778.
Hočevar M, Širok B, Godeša T, Stopar M (2014). Flowering estimation in apple orchards by image analysis. Precis. Agric. 15:466-478.
https://doi.org/10.1007/s11119-013-9341-6.
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S (2017). Speed/accuracy trade-offs for modern convolutional object detectors, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7310-7311.
Kamilaris A, Prenafeta-Boldú FX (2018). Deep learning in agriculture: A survey. Comput. Electron. Agric. 147, 70–90.
https://doi.org/10.1016/j.compag.2018.02.016.
Kapach K, Barnea E, Mairon R, Edan Y, Ben-Shahar O (2012). Computer vision for fruit harvesting robots–state of the art and challenges ahead. Int. J. Comput. Vis. Robot. 3:4-34.
Kaur R, Porwal S (2015). An optimized computer vision approach to precise well-bloomed flower yielding prediction using image segmentation. Int. J. Comput. Appl. p. 119.
Krizhevsky A, Sutskever I, Hinton GE (2012). Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems. pp. 1097-1105.
LeCun Y, Bengio Y, Hinton G (2015). Deep learning. Nature. 521:436-444.
Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017). Feature pyramid networks for object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2117-2125.
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016). Ssd: Single shot multibox detector, in: European Conference on Computer Vision. Springer, pp. 21-37.
Mannin CD, Manning CD, Schütze H (1999). Foundations of statistical natural language processing. MIT press.
Namin ST, Esmaeilzadeh M, Najafi M, Brown TB, Borevitz JO (2018). Deep phenotyping : deep learning for temporal phenotype / genotype classification. Plant Methods. pp. 1-14. https://doi.org/10.1186/s13007-018-0333-4.
Oppenheim D, Edan Y, Shani G (2017). Detecting Tomato Flowers in Greenhouses Using Computer Vision. Int. J. Comput. Electr. Autom. Control Inf. Eng. 11:104-109.
Plebe A, Grasso G (2001). Localization of spherical fruits for robotic harvesting. Mach. Vis. Appl. 13:70-79.
Rahim UF, Mineno H (in press). Tomato Flower Detection and Counting in Greenhouses Using Faster Region-based Convolutional Neural Network. Journal of Image and Graphics.
Redmon J, Divvala S, Girshick R, Farhadi A (2016). You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 779-788.
Redmon J, Farhadi A (2018). YOLOv3: An Incremental Improvement. Redmon J, Farhadi A (2017). YOLO9000: Better, faster, stronger. Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 2017-Janua, pp. 6517-6525. https://doi.org/10.1109/CVPR.2017.690.
Ren S, He K, Girshick R, Sun J (2015). Faster r-cnn: Towards real-time object detection with region proposal networks, in: Advances in Neural Information Processing Systems. pp. 91-99.
Simonyan K, Zisserman A (2014). Very deep convolutional networks for large-scale image recognition. arXiv Prepr. arXiv1409.1556. Thorp KR, Dierig DA (2011). Color image segmentation approach to monitor flowering in lesquerella. Ind. Crops Prod. 34:1150-1159.
https://doi.org/10.1016/j.indcrop.2011.04.002.
Tyagi AC (2016). Towards a second green revolution. Irrig. Drain. 65:388-389.
Ubbens J, Cieslak M, Prusinkiewicz P, Stavness I (2018). The use of plant models in deep learning: An application to leaf counting in rosette plants. Plant Methods 14:1-10. https://doi.org/10.1186/s13007 -018-0273-z.
Ward D, Moghadam P, Hudson N (2018). Deep leaf segmentation using synthetic data. arXiv Prepr. arXiv1807.10931.
Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 38:259-269.
Xu R, Li C, Paterson AH, Jiang Y, Sun S, Robertson JS (2018). Aerial Images and Convolutional Neural Network for Cotton Bloom Detection. Front. Plant Sci. 8:1-17. https://doi.org/10.3389/fpls.2017. 02235.
Zhao Y, Gong L, Huang Y, Liu C (2016). A review of key techniques of vision-based control for harvesting robot. Comput. Electron. Agric. 127:311-323.
Zhou X, Wang D, Krähenbühl P (2019). Objects as points. arXiv Prepr. arXiv1904.07850.